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Abstract—To reconstruct the 3D geometry from calibrated images, learning-based multi-view stereo (MVS) methods typically perform
multi-view depth estimation and then fuse depth maps into a mesh or point cloud. To improve the computational efficiency, many
methods initialize a coarse depth map and then gradually refine it in higher resolutions. Recently, diffusion models achieve great
success in generation tasks. Starting from a random noise, diffusion models gradually recover the sample with an iterative denoising
process. In this paper, we propose a novel MVS framework, which introduces diffusion models in MVS. Specifically, we formulate depth
refinement as a conditional diffusion process. Considering the discriminative characteristic of depth estimation, we design a condition
encoder to guide the diffusion process. To improve efficiency, we propose a novel diffusion network combining lightweight 2D U-Net and
convolutional GRU. Moreover, we propose a novel confidence-based sampling strategy to adaptively sample depth hypotheses based
on the confidence estimated by diffusion model. Based on our novel MVS framework, we propose two novel MVS methods, DiffMVS
and CasDiffMVS. DiffMVS achieves competitive performance with state-of-the-art efficiency in run-time and GPU memory. CasDiffMVS
achieves state-of-the-art performance on DTU, Tanks & Temples and ETH3D. Code will be available at: https://github.com/cvg/diffmvs.

Index Terms—3D Reconstruction, Multi-View Stereo, Diffusion Model, Deep Learning.

1 INTRODUCTION

ULTI-VIEW Stereo (MVS) aims to reconstruct the

dense 3D geometry for an observed scene from a set
of calibrated images. It has wide applications in real-world
scenarios, such as robotics, autonomous driving, virtual /
mixed reality and “metaverse”. It typically performs multi-
view depth estimation and then fuses depth maps into a
point cloud or mesh [1]-[4]. When estimating depth maps,
MVS is essentially an optimal correspondence search prob-
lem in a finite continuous depth space with photometric
consistency assumption [2]. However, due to the interfer-
ence from illumination changes, non-Lambertian surfaces
and low-textured areas which are common in real-world
scenes, it is challenging to accurately estimate the depth.

To address this problem, traditional methods design
many hand-crafted patch similarity metrics and use the
plane sweep algorithm [11] to determine the optimal depth
in discrete search space [12]. However, their discrete solu-
tion usually cannot find the optima [13]. PatchMatch MVS
methods [2], [4], [14] leverage the idea of nearest neighbor
search and random perturbations to progressively search
the optima, which improves the precision of depth estima-
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Fig. 1. Comparison between our methods (DiffMVS and CasD-
iffMVS) and state-of-the-art learning-based MVS methods on re-
construction performance, efficiency in run-time and GPU memory.
While being more efficient in terms of run-time and GPU memory, CasD-
iffMVS achieves better reconstruction performance than UniMVSNet [5],
TransMVSNet [6], GeoMVSNet [7] and ET-MVSNet [8] on Tanks &
Temples (T&T) [9] and ETH3D [10]. Moreover, DiffMVS achieves highest
efficiency in run-time and GPU memory, while achieving competitive
performance on T&T and ETH3D. Note that for fair comparison, we
evaluate the efficiency of all methods with the same input images on
one workstation.

tion. However, they still struggle under the aforementioned
challenges due to the traditional hand-crafted modeling.
Recently, learning-based MVS methods demonstrate a
significant improvement in reconstruction quality with deep
image features and regularization learned by Convolutional
Neural Networks (CNN). Typically, these methods [3], [15]
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use the plane sweep algorithm [11] to warp source image
features into the reference view and then construct 3D
cost volumes, which are regularized by 3D CNN for depth
estimation. However, the precision of these methods are
still constrained by the limited discrete depth ranges. To
alleviate this, recurrent methods [16]-[18] are proposed to
increase the number of sampling depth. But these methods
significantly sacrifice the efficiency due to their sequential
processing for the 3D cost volumes. On the other hand,
coarse-to-fine methods [19]-[22] initialize a low-resolution
depth map with sparse samples in the depth range. Then
they gradually refine it in higher resolutions with a reduced
finer depth range. Therefore, these methods further improve
depth map accuracy. However, their refinement heavily
relies on the quality of the coarse depth map since the
estimation in higher resolutions is usually restricted in a
reduced depth range that is centered around the coarse
depth. If the coarse estimation is incorrect, it is difficult to
recover from the errors induced at coarse resolutions and
the estimation may be restricted in local minima.

In this work, we rethink how to perform accurate multi-
view depth estimation by not only conditioning on the
previous coarse estimation, but also by introducing random
perturbations. Recently, diffusion models [23], [24] show
that injecting random noise can avoid collapsing into local
minima [25]. Inspired by the diffusion models that can
recover data samples from random noise with iterative
denoising process [23], [24], we hope our multi-view depth
estimation can mimic the denoising process to introduce
random noise and produce accurate estimation. However,
since the multi-view depth estimation is a discriminative
perception task instead of unconditional generative task,
introducing diffusion-based denoising process into multi-
view depth estimation will face the following challenges:

o Diffusion conditions. In order to obtain accurate de-
terministic estimation, it is important to condition the
diffusion network on some specific guidance. Since
matching information is crucial to obtain accurate
depth estimation in MVS, it is naturally to introduce
matching information as diffusion condition [26].
However, whether MVS requires other diffusion con-
ditions or how to integrate matching information
into diffusion models is still under-explored.

o Diffusion sampling. For generative tasks, diffusion
models [23], [24] typically denoise a noisy sam-
ple with the information of this sample only. For
discriminative tasks, e.g., feature matching, using
the information of a single sample only provides
zero-order optimization information, which makes it
unable to leverage non-local information for more
accurate first-order optimization [4], [27]-[29]. This
hinders accurate estimation for discriminative per-
ception tasks with diffusion models.

o Diffusion efficiency. Classical diffusion models for
generation tasks [23], [24] usually adopt large U-
Nets with attention mechanisms [30] to achieve
impressive performance. In addition, some recent
works [31] have shown that stacking U-Nets is ben-
eficial to improve performance. However, these de-
signs will inevitably hinder the efficiency, which is

important for MVS applications.

To overcome the above challenges, we present a novel
MVS framework with conditional diffusion models. Specif-
ically, based on the coarse depth initialization, we design
three key modules to construct our conditional diffusion
models to refine the coarse depth map. First, we propose a
condition encoder to effectively adapt diffusion models for
depth estimation tasks. The condition encoder fuses match-
ing information, image context and depth context features
as the condition feature. This enables our diffusion model
to perceive not only local similarity indicated by matching
information, but also long-range context information pro-
vided by image and depth context features. Second, we in-
troduce a confidence-based sampling strategy to adaptively
generate multiple depth hypotheses for each pixel. Different
from existing MVS methods that sample depth hypotheses
around coarse estimation [19], [22], our sampling is based on
the noisy coarse estimation perturbed by the random noise
from diffusion process. This introduces randomness but
may lack informative first-order optimization information if
we generate depth hypotheses in a fixed range [19], [22] since
the coarse estimation may be perturbed a lot by random
noise. To solve this, our confidence-based sampling strategy
leverages per-pixel predicted confidence to adaptively ad-
just the sampling range and capture non-local first-order
optimization information, thus facilitating the denoising
process. Third, we propose a novel lightweight diffusion
network, which consists of 2D denoising U-Net and convo-
lutional GRU. Since GRU can capture historical information
iteratively to enhance feature expression capability and is
proven effective in iterative refinement [27], we design a
lightweight U-Net combined with convolutional GRU as
our diffusion model. We perform multi-iteration refinement
with GRU in a single diffusion timestep, which not only
improves performance but also circumvents the usage of
large or stacked U-Nets of existing diffusion models [23],
[31] and thus improves efficiency.

With our framework, we propose two novel MVS meth-
ods, named as DiffMVS and CasDiffMVS. DiffMVS per-
forms depth refinement with a single-stage diffusion model,
while CasDiffMVS extends DiffMVS and performs depth
refinement on two stages. The former is tailored for real-
time applications, while the latter is designed for high-
accuracy requirements. Extensive experiments demonstrate
that DiffMVS achieves competitive performance with state-
of-the-art (SOTA) efficiency in both run-time and mem-
ory, while CasDiffMVS achieves SOTA reconstruction per-
formance on various benchmarks with high efficiency, as
shown in Fig. 1. In summary, our contributions are as
follows:

o We propose a novel MVS framework which exploits
conditional diffusion models to achieve efficient, ac-
curate and lightweight multi-view depth estimation.

e We propose a condition encoder to fuse matching
information, image context and depth context fea-
tures as the condition input of diffusion model. This
provides the diffusion model specific guidance to
generate accurate depth predictions.

o We introduce a confidence-based sampling strategy,
which adaptively generates multiple samples in a
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local range based on the confidence estimated from
diffusion model to provide informative first-order
optimization directions.

o We develop a lightweight diffusion network, which
leverages convolutional GRU to replace the large
denoising U-Nets used in classical diffusion models.
This greatly improves the efficiency of our models.

e Based on our novel MVS framework, we propose
two novel MVS methods, DiffMVS and CasDiffMVS.
The former one achieves competitive performance
with SOTA efficiency in both run-time and memory,
while the later one achieves SOTA performance on
various benchmarks.

2 RELATED WORK

Traditional MVS. Traditional MVS methods can be mainly
divided into three categories: voxel based [32]-[35], point
cloud based [36], [37] and depth map based [4], [14], [38]-
[40]. Depth map based methods decouple the reconstruction
problem into multi-view depth estimation and depth fusion,
which explicitly improve flexibility and scalability. This
characteristic makes depth map based methods dominate
MVS. PatchMatch [41] algorithm is commonly used by
traditional depth map based methods to improve efficiency.
For example, Gipuma [14] uses a red-black checkerboard
pattern to propagate depth hypotheses. ACMM [4] further
adopts adaptive checkerboard sampling and multi-scale
geometric consistency guidance to improve performance.
To further alleviate matching ambiguity in low-textured
areas, HPM-MVS [29] introduces hierarchical prior mining
for non-local MVS. ADP-MVS [42] designs adaptive patch
deformation to measure matching cost. These PatchMatch
MVS methods leverage random neighbor search and per-
turbations to estimate depth from a finite continuous depth
space. However, traditional MVS methods rely on hand-
crafted matching metrics and thus encounter challenges
in challenging conditions, e.g., illumination changes, low-
textured areas, and non-Lambertian surfaces [9], [10], [43],
[44]. Our framework leverages deep features to measure
matching similarities and introduces randomness from dif-
fusion models to avoid local minima.

Learning-based MVS. Due to the limited performance of
hand-crafted modeling under challenging conditions, many
learning-based MVS methods have been proposed in recent
years and achieved better performance on various bench-
marks [9], [10], [43]. Based on plane sweep algorithm [45],
MVSNet [3] proposes differentiable homography to con-
struct a 3D cost volume with warped image features, regu-
larizes the cost volume with a 3D U-Net [46], and regresses
the depth map from the probability volume. However, 3D
CNN explicitly increases the memory consumption and run-
time. To improve computational efficiency, many variants
based on MVSNet [3] are proposed and can be mainly cate-
gorized into recurrent methods [16], [17], [47] and coarse-to-
fine methods [5], [6], [19]-[22], [48]-[52]. Recurrent methods
reduce the memory consumption by sequentially regulariz-
ing 2D cost maps from the 3D cost volume with recurrent
neural networks (RNN). However, these methods have low
time efficiency since they trade time for memory. Coarse-
to-fine methods first estimate a coarse depth map in low
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resolution and then reduce the search range in higher res-
olutions to improve the accuracy. These methods explicitly
improve the inference speed and reduce memory consump-
tion. Recently, inspired by RAFT [27] that uses a GRU [53] to
emulate first-order optimization, several methods [28], [54]
use GRU for depth refinement and achieve high efficiency
in memory and run-time. Different from these methods, our
methods leverage the denoising process of diffusion models
to refine the coarse depth estimation.

Geometry estimation with diffusion models. As a class
of deep generative models, diffusion models [23], [25], [55]
start from a random noise and recover the data sample with
an iterative denoising process. They have achieved impres-
sive results in image [23], [24], [56] and video [57] generation
tasks. Recently, many researchers have shown that diffusion
models can be used for many geometry estimation tasks,
such as monocular depth estimation [55]-[60], monocular
normal estimation [61], [62], depth completion [63], feature
matching [64], pose estimation [65]-[67] and optical flow
estimation [68], [69]. With the introduction of conditional
diffusion models, these methods outperform previous state-
of-the-art methods. In this paper, we introduce a novel con-
ditional diffusion model in MVS and explore a generative
paradigm for accurate and efficient reconstruction.

Confidence estimation in stereo/MVS. Confidence esti-
mation has been shown to be effective in predicting the
reliability of disparity/depth estimation in stereo/MVS.
Early methods [70]-[72] utilize conventional features to train
random forest classifiers for confidence estimation with a
two-class label for each pixel. In stereo matching, recent
methods [73]-[75] leverage CNN to predict confidence from
disparity map, reference image and cost volume. In MVS,
some methods also use confidence/uncertainty estimation
to improve depth prediction. UCSNet [20] computes the
variance of the probability volume to define the confidence
and uses it to determine the depth range at the next stage.
UGNet [76] employs uncertainty learning to predict the
uncertainty from the cost volume directly to capture the
uncertainty of the depth map. Vis-MVSNet [49] estimates
the uncertainty of the pair-wise depth map to construct a
more reliable aggregated cost volume to predict the final
depth map. Our methods predict confidence based on our
designed diffusion model, which incorporates cost volume,
image context and depth context features. Moreover, our
predicted confidence is combined with the noisy depth for
depth sampling, which greatly enhances the power of our
diffusion models.

3 METHODOLOGY

In this section, we introduce the details of our MVS frame-
work with conditional diffusion models. The framework
mainly consists of two modules: depth initialization and
diffusion-based depth refinement. First, we obtain an initial
coarse depth map with the depth initialization module.
Then we develop a novel conditional diffusion model to
refine it in higher resolutions. Based on our MVS frame-
work, we propose DiffMVS and CasDiffMVS, which are
visualized in Fig. 2. Structually, DiffMVS performs depth
refinement on a single stage (stage 2) and then upsamples to
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Fig. 2. Overview of DiffMVS and CasDiffMVS. (a) shows the overall pipeline of DiffMVS and CasDiffMVS. A coarse depth map is initialized in low
resolution (stage 1). Then DiffMVS uses a single diffusion-based refinement module on stage 2 to refine the coarse depth map, while CasDiffMVS

uses cascade diffusion-based refinement on stage 2, 3. Finally, the refined

depth map is upsampled to full resolution. (b) shows the architecture of

diffusion-based refinement. It refines the coarse depth map by denoising the current noisy depth map. A context encoder is used to extract image
context and hidden state features from the reference view. To encode condition feature for the diffusion network, a condition encoder takes as input

the image context feature, depth context feature and the cost volume con

structed with reference and source features. With the condition feature

and hidden state feature, the diffusion network outputs refined depth and confidence. Best viewed on a screen when zoomed in.

full resolution, while CasDiffMVS performs refinement on
two stages (stage 2, 3) and then upsamples to full resolution.

3.1 Preliminaries

As a class of generative models, diffusion models [23], [25],
[55] iteratively recover samples from random noise. Given
the data distribution & ~ p(z), diffusion model defines
a Markovian chain of forward process and gradually adds
Gaussian noise N(0, I) to the sample @(. The noisy sample
x; at timestep ¢t € {1,...,T} can be computed as:

x; = Vouxro + V1 —ae, e~ N(0,I), 1

where a; := [[i_; a; = [['_,(1 — B;) and 5; represents the
noise variance schedule [23].

In the reverse process, the denoising model fy(x:,t),
parameterized with learnable parameters 0, is trained to
predict the added noise € from x,; by minimizing the train-
ing objective function £ as follows [23]:

L = Egy en(0,1),0~u1,m)| € — €[, )

where U(1,T) denotes the uniform distribution. To better
control the generation, conditional diffusion models intro-
duce condition ¢, e.g., text prompt [24], image [59], [77], into
the denoising model as fy(x4, ¢, t). Note that the diffusion
models for discriminative tasks [31], [59], [64], [78], [79] are
all conditional diffusion models.

At the inference stage, x is reconstructed from a Gaus-
sian noise 7 in an iterative way based on the diffusion
network fy(-) and an update rule [23], [80]. To achieve good
performance, DDPM [23] needs to sample many steps and
thus has low sampling efficiency. In contrast, DDIM [80]
proposes non-Markovian forward process, which is capable
to generate high-quality samples with much fewer sampling
steps.

3.2 Problem Formulation and Motivation

In this work, we aim to solve multi-view depth estimation
tasks in MVS with a conditional diffusion model. Recently,

most state-of-the-art MVS methods [6], [19], [22], [54] ini-
tialize a coarse depth in low resolution and then refine it in
high resolutions, which achieves impressive performance in
both efficiency and accuracy. Following these methods, we
initialize a low-resolution depth map and then progressively
upsample and refine it with diffusion process in a cascade
pipeline.

Formally, for a reference image Iy and its neighboring
images {I;}Y !, we denote the im?\ge features extracted
from these images as Fy and {F;}2|'. The objective of
multi-view depth estimation is to find the depth map D
corresponding to the reference image Ij. In our framework,
we aim to refine an initial depth map, Djni, with a diffusion
model and image features. Specifically, we seek to find D*
that maximizes the posterior probability of the estimated
depth map given the initial depth map Dy and image
features F = {Fy, {F;}X1'}, ie.,, p(D|F, Diyt). To find the
depth map D* that maximizes the posterior, we can use the
maximum a posteriori (MAP) approach:

D* = argmax p(D|F, Diyit) = argmax p(F|D) - p(D|Dinit)
D D
= arg max{log p(F|D) + log p(D|Dinyt) }-
D
3)

In this probabilistic interpretation, the first term (data term)
represents the matching evidence between image features
Ey and {Fi}fi_ll, and the second term (prior term) encodes
prior knowledge of the depth map D.

Previous methods focus on constructing cost volumes
/ matching confidence and regressing the final depth map,
including TransMVSNet [6], MVSTER [52] and DUSt3R [81].
This might be analogy to arg maxp log p(F|D). On the one
hand, these methods usually construct the data term using a
refined depth range centered around the initial depth map,
Diyir. This often causes these methods to get stuck in local
minima. On the other hand, the prior term log p(D|Djnit) is
not explicitly considered in these regression-based methods.
In fact, it is difficult for the data term to learn an accurate
depth estimation in ambiguous areas, e.g. textureless areas
and occlusions, which are common in the real world.
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Since conditional diffusion models excel at learning the
data distribution p(D|F, Dinit) given inputs F and Dini,
we can leverage them to explicitly incorporate both data
term and prior term within a unified probabilistic frame-
work. The data term encodes the geometry consistency
between Fp and {F;}~ ', which guides the generation
process to be consistent with conditions. Meanwhile, the
prior term encodes the structural and geometric constraints,
which alleviates the ambiguity in challenging regions. Al-
though diffusion models in image generation tasks enhance
diversity without conditions, our model reduces diversity
as it is conditioned on the geometry consistency between
Fy and {F;}Y ', which is a characteristic of conditional
diffusion models [82]. The random noise within our diffu-
sion model aims to avoid local minima. Therefore, inspired
by the ability to avoid falling into the local minima and
the explicit prior modeling in diffusion models, we aim to
explore diffusion models for MVS.

3.3 Multi-scale feature extraction

Given a reference image Iy € RF*W*3 and its neighbor-
ing source images {I;}N ' € RT*Wx3 we extract multi-
scale features with a Feature Pyramid Network (FPN) [83],
where N is the number of input images, H and W de-
note the image height and width, respectively. Specifically,
we extract image features at M different stages (DiffMVS:
M = 2, CasDifftMVS: M = 3). We denote the image
feature of I; at stage m with F/™ € R¥m>XWnxCn wwhere
H, = H/2*™W,, = W/2*"™, m = 1,---, M. For
simplicity, we omit the superscript m below.

For the reference image I, we further use a context
FPN encoder to extract the multi-scale context features F,
and hidden state features hg for upsampling and diffusion
model.

3.4 Depth initialization

We initialize the coarse depth map Din: at stage 1 (1/8
resolution) and then refine it in higher resolutions with
diffusion model. The initialization pipeline is shown in
Fig. 3.

Cost volume construction. Given a pre-defined depth range
[dmin, dmax], we uniformly sample per-pixel depth hypothe-
ses {d; }f:‘Jl in the inverse range [1/dmax, 1/dmin], where Dy
is the number of initial samples. This inverse sampling is
considered more suitable for large-scale scenes [15], [16],
[22], [51]. Then we warp the features of source views into the
reference view at these depth hypotheses. Specifically, for a
pixel p in the reference view, we compute the corresponding
pixel p; ; := p;(d;) in source view i as follows:

pij=K; (Ro; (Ky'-p-d;)+tos), 4)

where Ky, K; denote intrinsic and [Ry ;|to ;] denotes rela-
tive transformation between reference view and source view
i. Then we obtain the warped source feature F;(p; ;) with
bilinear interpolation.

To reduce computation, we follow [15], [22], [28] and use
group-wise correlation to compute the similarity between
reference feature Fy(p) and warped source feature F;(p; ;).

_}
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Fig. 3. Pipeline of depth initialization. A lightweight cost volume is
constructed and regularized by a 3D U-Net to produce the initial depth
D, See Sec. 3.4 for more details. Best viewed on a screen when
zoomed in.

By evenly dividing C; feature channels into G' =4 groups,
we compute the g-th group similarity s;(p, j)9 as:

si(p.j)? = ﬁ (Fo(p)?, Fi(pi;)?) | 5)

where (-, ) denotes the dot product. This results in N — 1
similarity volumes {S;} ¥ 1 € RFWixDoxG,

To aggregate these N — 1 similarity volumes, the naive
way is to compute the average of them [15]. However,
this does not take occlusions into consideration, which will
lead to invalid matching and inaccurate estimations [2].
Following [22], [48], [51], we estimate the pixel-wise view
weight for each source view ¢ with a lightweight network
to provide visibility information and robustly aggregate
matching information. Specifically, for each S;, we apply
two 3D convolution layers and then softmax along the depth
dimension to produce w; € RH>WrPo_ For pixel p and
source view 14, the corresponding view weight W;(p) is
computed as:

Wi(p) = maxwi(p, j). 6)
Finally, the cost volume V is aggregated as:
S Wi S
DRy pe— @)
zi:l W’L

Depth prediction. We regularize V' with a lightweight 3D
U-Net and then apply softmax along the depth dimension to
produce the probability volume P € R¥>W1xDo_ The initial
depth Diyit is computed as the expectation in inverse range:

—1

Dy 1
D= >_PG)- 7] ®)
- j
j=1
where P(j) is the probability of all pixels at depth d;.

3.5 Diffusion-based refinement

The initial depth Dy is not accurate since it is estimated at
low resolution with sparse depth hypotheses. We propose a
conditional diffusion model, shown in Fig. 2(b), to refine the
coarse depth on higher resolutions. Unlike unconditional
diffusion models in generation tasks [23], depth estimation
is a discriminative perception task and thus our diffusion
model is conditioned on the feature encoded by condition
encoder, so that the generation diversity can be constrained
and thus depth map can be accurately denoised.

Forward process. To make our method robustly generalize
to scenes with different scales, we use the normalized inverse
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Fig. 4. Structure of our condition encoder. With the new depth
hypotheses generated with confidence-based sampling, we compute
the local cost volume as introduced in Sec. 3.4. Our condition encoder
applies 2D convolution layers to encode geometric matching information
from the local cost volume, depth hypotheses and image context feature
as the condition feature. Best viewed on a screen when zoomed in.
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Fig. 5. Structure of our diffusion network. The network combines a
2D U-Net with convolutional GRU. The condition feature is used as the
condition for 2D U-Net to denoise the depth residual. Best viewed on a
screen when zoomed in.

depth D € [0, 1] for depth map D throughout the diffusion

process:
_ 1 1 1 1
D=|(—-- — . 9
<D dmax> / (dmin dmax> ( )

For each refinement stage, we denote the initial depth
upsampled from previous stage as Dy. We compute the
ground truth depth residual xg as:

xg = Dg — Do, (10)

where Dy, denotes the normalized inverse of ground truth.
During training, we uniformly sample timestep ¢t ~ U(1,T)
and compute the noisy x; with Eq. 1.

Reverse process. To refine the depth, our diffusion model
denoises the depth residual x, with the reverse process.
Following prior works [23], [24], we design our conditional
denoising diffusion model based on a 2D U-Net architec-
ture, shown in Fig. 5.

Recently, RAFT [27] is popular in optical flow estimation
since it performs iterative refinements with GRU to achieve
impressive performance with low complexity. Motivated by
RAFT, many stereo [84] / MVS [28], [54], [85] methods adopt
iterative GRU refinements with lightweight 2D convolu-
tions to outperform a single refinement with cumbersome
3D convolutions. Since we focus on both efficiency and
performance in this work, we follow these methods and

6

introduce convolutional GRU into a lightweight 2D U-Net
(See below for details). Consequently, in each diffusion
timestep, we iteratively refine K times. Note that recent
diffusion models, e.g., DiffusionDet [31] and DifFlow3D [79],
also update multiple iterations in each diffusion timestep to
improve performance in discriminative perception tasks.

Specifically, in the k-th iteration of diffusion timestep t,
our diffusion model predicts the update of depth residual,
Az i, and the confidence Cy j of current estimation. After
K iterations, the depth residual is denoised as:

K

To=x + Az = + Z Axy g, (11)
k=1
where &, is the denoised prediction of the ground truth
residual «(. Based on Eq. 10, the final refined inverse depth
can be represented as Dt, k = Do+ &¢. In the k-th iteration,
we compute the intermediate refined inverse depth th k for
training process:

k
D =Dy+z + Z Axy .

n=1

(12)

Condition encoder. For simplicity, we omit the subscript
t of diffusion timestep below. In the k-th iteration, we first
sample D; per-pixel new hypotheses in a local range around
previous depth estimation Dj_1, resulting in DSample €
RAmWmxD1- (details of sampling strategy with conﬁdence
will be introduced later). Second, we compute the local
cost volume Lj € RHmWmxDG for the new hypotheses
(Sec. 3.4), which is further reshaped into RAmWmX(D1xG)
For the view weights {W;}Y 7! in Eq. 7, we reuse those
predicted at stage 1 and upsample them with nearest neigh-
bors.

For diffusion model, the depth samples as well as corre-
sponding costs can guide the model to find a refined depth
value. In addition, the consistency between depth map and
image is also helpful to refine the depth map [22]. Therefore,
we propose a lightweight condition encoder to inject useful
conditions into the diffusion model. The structure of our
condition encoder is depicted in Fig 4. Specifically, the
cost volume L is processed by 2D convolutional layers.
Additionally, we apply 2D convolutional layers on DSample
to generate depth context features. Then we Concatenate
these two features and apply 2D convolutional layers, which
is finally concatenated with the previous depth Dj_; and
reference context feature F; as the condition input of diffu-
sion model.

Denoising U-Net with GRU. Following prior works [23],
[24], we design our conditional diffusion model based on
a 2D U-Net architecture. Following DDPM [23], we inject
the timestep embedding into the layers of U-Net. We exper-
imentally find that the attention operation used in DDPM
does not explicitly improve the performance. Therefore, we
do not introduce attention into the U-Net so that the models
are efficient and lightweight.

As mentioned before, we introduce GRU into the 2D
U-Net in consideration of efficiency and performance. The
structure of our diffusion network is depicted in Fig. 5.
Specifically, we introduce a convolutional GRU in the lowest
resolution of U-Net. To initialize the hidden state of GRU,
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we apply 2D convolutional layers followed by tanh non-
linearity on the hidden state feature hg of the reference im-
age. In the k-th iteration, the U-Net encodes the conditional
feature from the condition encoder to update the hidden state
hj_; of the GRU into hj. Then hy, is decoded to predict the
update of depth residual Axy, as well as the confidence Cy,
of current depth estimation (sigmoid is applied on confidence
to ensure C}, € [0, 1]).

Confidence-based sampling. Utilizing non-local informa-
tion with multiple samples is proven effective in many MVS
methods to provide first-order optimization information [4],
[271-[29]. Therefore, different from classical diffusion mod-
els [23] that use a single sample, we propose confidence-
based sampling strategy and adaptively generate multiple
samples. To refine the coarse depth map, many MVS meth-
ods [6], [19], [22], [28], [54] use a constant search range for
all pixels to generate new depth hypotheses around the
previous estimation. However, it is reasonable to include
confidence/uncertainty of the estimation in the sampling.
Specifically, the search range should be reduced for pixels
with accurate estimation to further improve accuracy, while
enlarged for pixels with erroneous estimation so that the
search range may cover the ground truth. For example,
UCSNet [20] computes the per-pixel sampling range with
the variance of the probability volume on multiple stages.
However, this is not suitable in our framework since we do
not estimate the probability volume during refinement.

In our methods, we adaptively adjust the per-pixel
sampling range R; based on the confidence Cj_; from
the diffusion model. For the first iteration k¥ = 1, we set
R, = Rini;, where Ry is a pre-defined range for each stage.
For k > 1, Ry, is computed as:

Rk = (1 - Ckrfl) ' (Rfmax - Rfmin) + Rmim (13)

where Riin = Amin* Rinit, Bmax = Amax* Rinit are pre-defined
limits of the sampling range. Then we ur}iformly sam_ple D4
depth hypotheses in the inverse range [Dj,_1 — Ry, Dj—1 +
Ry

3.6 Learned upsampling

Since our methods use multi-stage structure, we need to
upsample the depth between different stages. Instead of
simple bilinear or nearest interpolation [19], [22], we use
learned upsampling with mask [27], [28], which experimen-
tally improves performance. Specifically, we compute the
depth value of each pixel in the upsampled depth as the
convex combination of a 3 x 3 grid of its coarse resolution
neighbors. For stage m, we predict a mask, with a shape
as Hp, x Wy, x (r x r x 9), by applying 2D convolution
layers on the reference context feature F}", where r is the
upsample ratio. Then we apply softmax over the weights of
the 9 neighbors and predict the upsampled depth as the
weighted combination over the neighborhood.

3.7 Training loss

Our loss function Ly includes the losses for all the depth
maps, i.e., initial depth Djns, intermediate depth inside the
diffusion-based refinement {D; ;. }X_, at timestep ¢, and all
the upsampled depth maps. For clarification, we sort all

7

depth maps based on the estimation order as {D;} 3’:1,
where J is the number of depth maps. Following Iter-
MVS [28], we transform the depth map D into the normal-
ized inverse space with Eq. 9 and compute the L loss w.r.t.
the ground truth depth map Dy

L=|D - Dy,

where D, Dgt are the normalized inverse depth for D, Dy;.
For the depth map D in diffusion-based refinement where
we estimate the corresponding confidence C, we include C
inside the loss function as:

|D — Dyl

t="1-¢

where \c = 0.05 is the weight. We use confidence C' to
adjust the weight for Lq loss, and A¢ - log(l — C) as a
regularization term to avoid trivial solution as C' = 0.

Following [27], [28], [54], we use exponentially increas-
ing weights for the depth maps to balance the depth super-
visions across different stages and iterations. The motivation
is that the depth should be estimated from coarse to fine
and thus the error is gradually penalized more. Therefore,
the final loss Lgy is written as:

(14)

+ ¢ - log(l — C), (15)

J
Lo = B777Ly, (16)
=1

where L; is the loss for D;, § = 0.9 is the weight.

4 EXPERIMENTS
4.1 Datasets

Following prior works, we use DTU [43] and Blended-
MVS [44] for training, and evaluate the performance on
DTU, Tanks & Temples [9] and ETH3D [10].

DTU dataset. DTU [43] is an indoor multi-view stereo
dataset collected with known accurate camera trajectory. It
contains 124 different object-centered scenes captured with
7 different lighting conditions. Following previous methods,
we use the training, testing and validation sets introduced
in SurfaceNet [86].

BlendedMVS. BlendedMVS [44] is a large-scale synthetic
dataset with various scenes. It provides over 17k high-
quality training samples with accurate depth maps and cam-
era poses. It is divided into the training set and validation
set. Compared with DTU [43], BlendedMVS contains scenes
with various scales, e.g., from object level to city level, and
is thus commonly used to improve the generalization ability
of learning-based MVS methods.

Tanks & Temples. Tanks & Temples [9] is a large-scale real-
world dataset consisting of both indoor and outdoor scenes,
which is divided into training set and test set. Learning-
based MVS methods [3], [19], [22] commonly test the zero-
shot generalization ability on the test set. The test set is
further divided into intermediate and advanced subsets, where
the advanced subset is more challenging than the intermediate
subset because of the complex structures.

ETH3D. ETH3D [10] is a large-scale dataset captured
in complex real-world scenes under challenging condi-
tions, e.g., low-textured regions and wide baselines. It con-
tains both outdoor and indoor scenes. The dataset is divided



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

into training set and test set. Both sets are commonly used
to test the zero-shot generalization ability of learning-based
MVS methods [28], [50], [52].

4.2

In this section, we discuss the implementation details of
DiffMVS and CasDiffMVS, including hyper-parameter set-
tings, training and inference details.

Implementations

Hyper-parameters. For depth initialization, we set the num-
ber of initial samples Dy = 48 for both DiffMVS and Cas-
DiffMVS. For confidence-based sampling, we set D; = 6,
Amin = 0.25, Amax = 4, Rine = 3/192.0 for DiffMVS.
For CasDiffMVS, we set Rint = 1/96.0 for stage 2 and
Rinit = 1/192.0 for stage 3. We set D1 = 4, A\pin = 0.125,
Amax = 8 for both stages of CasDiffMVS.

For diffusion models, we set the total diffusion timesteps
as T' = 1000. In each diffusion timestep, we refine K = 4
times for DiffMVS and K = 3 times for CasDiffMVS. Since
we aim to refine the coarse initial depth and normalize
the depth values during diffusion into the range [—1,1],
we find that using standard Gaussian noise, i.e., N(0, 1),
like DDPM [23] will introduce too strong noise for refine-
ment. Therefore, we set the Gaussian noise for stage m as
N (0,02 1) to control the noise scale. Specifically, we set
oy = 0.5 for the refinement on stage 2, and o3 = 0.1 for the
refinement on stage 3 when training on DTU. Considering
that the DTU-trained models provide a good initialization
for fine-tuning and the domain gap between the DTU and
large-scale BlendedMVS, we further design a noise-scaling
strategy to fine-tune our models on BlendedMVS. Specifi-
cally, o2 and o3 will be halved at the start of fine-tuning and
after 8 epochs. We empirically find this enables our models
to generalize better on Tanks & Temples [9] and ETH3D [10].

Training. We implement DiffMVS and CasDiffMVS with
PyTorch [87], and use Adam [88] (51 = 0.9, B2 = 0.999) as
the optimizer. First, we train our models on DTU training
set [43] for evaluation on DTU testing set. For evaluation on
Tanks & Temples [9] and ETH3D [10], we further finetune
the DTU-pretrained models on BlendedMVS [44]. The image
resolution is set to 640 x 512 for DTU, and 768 x 576 for
BlendedMVS. The number of input views N is set to 5
for DTU and 9 for BlendedMVS. On both datasets, we set
the batch size as 4 and train the models under OneCycleLR
scheduler with a maximum learning rate as 0.001. We train
DiffMVS and CasDiffMVS for 12 and 16 epochs respectively
on each dataset.

Inference. During inference, we adopt DDIM [80] to im-
prove sampling efficiency. We set DDIM sampling timestep
as Ts = 1 since we observe that our methods converge fast
with 1 sampling timestep only and the performance will not
explicitly improve with more sampling timesteps.

After depth estimation, we use photometric and geomet-
ric consistency to filter outliers in the depth maps, following
common practices [3], [47], and back-project the valid pixels
into the 3D space as the final point cloud.

4.3 Evaluation

In this section, we evaluate both DiffMVS and CasDiffMVS
on popular MVS benchmarks [9], [10], [43] and compare

TABLE 1
Quantitative results on DTU [43]. Methods are separated into four
categories (from top to bottom): traditional methods, learning-based
methods without refinement, with single-stage refinement and with
multi-stage refinement. Red, orange, and yellow highlights indicate the
1st, 2nd, and 3rd-best performing method.

Methods Acc.(mm) | Comp.(mm) | Overall(mm) |
Gipuma [14] 0.283 0.873 0.578
COLMAP [38] 0.400 0.664 0.532
MVSNet [3] 0.396 0.527 0.462
R-MVSNet [16] 0.383 0.452 0.417
AA-RMVSNet [17] 0.376 0.339 0.357
TterMVS [28] 0.373 0.354 0.363
DiffMVS 0.318 0.297 0.308
CasMVSNet [19] 0.325 0.385 0.355
PatchmatchNet [22] 0.427 0.277 0.352
EPP-MVSNet [50] 0.413 0.296 0.355
PVSNet [51] 0.337 0.315 0.326
UniMVSNet [5] 0.352 0.278 0.315
TransMVSNet [6] 0.321 0.289 0.305
Effi-MVS [54] 0.321 0.313 0.317
MVSTER [52] 0.340 0.266 0.303
GeoMVSNet [7] 0.331 0.259 0.295
ET-MVSNet [8] 0.329 0.253 0.291
EI-MVSNet [89] 0.346 0.260 0.303
Effi-MVS+ [90] 0.327 0.275 0.301
GC-MVSNet [91] 0.330 0.260 0.295
CANet [92] 0.351 0.248 0.299
CasDiffMVS 0.310 0.286 0.298

with state-of-the-art methods. In addition, since efficiency in
run-time and memory consumption is important in practice,
we compare the efficiency of our methods with state-of-the-
art methods.

Evaluation on DTU. Following prior works, we evaluate
with our models trained on DTU training set only. We set
the image size and number of views N to 1600 x 1152 and
5 respectively. Table 1 summarizes the quantitative results.
Compared with IterMVS [28], the current state-of-the-art
method with single-stage refinement, DiffMVS outperforms
it with a large margin in all metrics. Moreover, DiffMVS
performs better than many learning-based methods with
multi-stage refinement, e.g., Effi-MVS [54], UniMVSNet [5],
in overall quality. As the multi-stage extension of DiffMVS,
CasDiffMVS outperforms other learning-based methods in
accuracy and achieves very competitive performance in over-
all quality when compared with the top-performing meth-
ods [7], [5].

Evaluation on Tanks & Temples. To demonstrate the zero-
shot generalization capability of our methods, we evaluate
on Tanks & Temples. We use the depth range, camera
parameters and view selection provided by Patchmatch-
Net [22]. The image size and number of views are set to
1920 x 1056 and 10 respectively. For depth filtering, we
use dynamic geometric consistency checking method in-
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TABLE 2
Quantitative results on Tanks & Temples [9] using F-score (%) (higher is better). Methods are separated into four categories (from top to bottom):
traditional methods, learning-based methods without refinement, with single-stage refinement and with multi-stage refinement. Red, orange, and
yellow highlights indicate the 1st, 2nd, and 3rd-best performing method.

Methods Intermediate Advanced
Mean | Family Francis Horse Light. M60 Panther Play. Train | Mean | Audi. Ball. ~Court. Museum Palace Temple

COLMAP [2] 4214 50.41 2225 2663 5643  44.83 46.97 4853 4204 | 2724 | 16.02 2523 3470 41.51 18.05 27.94
ACMM [4] 57.27 69.24 51.45 4697 6320 5507 57.64 60.08 5448 | 34.02 | 2341 3291 @ 4117 48.13 23.87 34.60
HPM-MVS [29] 61.39 73.40 57.67 56.96 6470  60.39 61.21 60.35 5643 | 40.80 | 3285 46.00 40.92 53.04 29.63 42.37
R-MVSNet [16] 48.40 69.96 46.65 3259 4295 5188 48.80 5200 4238 | 2491 | 1255 29.09  25.06 38.68 19.14 24.96
IterMVS [28] 56.94 76.12 55.80 50.53  56.05  57.68 52.62 5570 50.99 | 3417 | 2590 3841 31.16 44.83 29.59 35.15
DiffMVS 63.39 78.14 62.73 6229 6320 61.10 61.84 59.65 5818 | 39.69 | 31.10 4345 37.85 48.74 3294 44.05
CasMVSNet [19] 56.84 76.37 58.45 4626  55.81 56.11 54.06 5818 4951 | 3112 | 19.81 3846 29.10 43.87 27.36 28.11
PatchmatchNet [22] | 53.15 66.99 52.64 4324  54.87 5287 49.54 5421 50.81 | 3231 | 23.69 3773  30.04 41.80 28.31 3229
EPP-MVSNet [50] 61.68 77.68 60.54 5296  62.33  61.69 60.34 6244 5530 | 3572 | 21.28 3974 35.34 49.21 30.00 38.75
PVSNet [51] 59.11 78.13 61.62 5211 5690  60.12 53.77 5758 52.64 | 3551 | 2440 4096  34.23 47.95 29.02 36.50
UniMVSNet [5] 64.36 81.20 66.43 5311 6346  66.09 64.84 6223 5753 | 3896 | 28.33 4436 39.74 52.89 33.80 34.63
TransMVSNet [6] 63.52 80.92 65.83 56.94 6254  63.06 60.00 6020 58.67 | 37.00 | 24.84 4459 3477 46.49 34.69 36.62
Effi-MVS [54] 56.88 72.21 51.05 51.78 5863 5871 56.21 57.07 4938 | 34.39 | 2022 4239 3373 45.08 29.81 35.09
MVSTER [52] 60.92 80.21 63.51 5230  61.38 6147 58.16 5898 5138 | 3753 | 26.68 4214  35.65 49.37 32.16 39.19
GeoMVSNet* [7] 62.67 80.12 66.14 5197 6595 6170 60.40 6120 5391 | 39.08 | 2530 4575 37.72 50.36 34.85 40.47
ET-MVSNet [8] 65.49 81.65 68.79 59.46 6572 64.22 64.03 6123 5879 | 4041 | 2886 4518  38.66 51.10 35.39 43.23
EI-MVSNet [59] 65.52 81.59 67.67 61.67  63.18  65.10 63.42 60.62 6095 | 40.68 | 29.97 4586 3845 49.50 35.78 44.53
Effi-MVS+ [90] 64.07 79.87 66.77 5729 6635 62.83 61.11 62.14 5623 | 41.20 | 32.04 47.04 3884 51.26 34.95 43.06
GC-MVSNet [91] 62.74 80.87 67.13 53.82  61.05 62.60 59.64 58.68 5848 | 38.74 | 2537 4650  36.65 49.97 35.81 38.11
CANet [92] 65.05 80.41 63.85 59.62 ~ 67.32  65.03 64.18 62.05 57.90 | 41.22 | 3126 46.17  40.54 52.70 33.49 43.15
CasDiffMVS 65.87 81.74 69.21 6352 6589 6292 62.35 61.31 60.00 | 41.81 | 3266 4570  39.34 50.93 35.25 47.01

*: GeoMVSNet does not provide official checkpoint on BlendedMVS. Following official scripts, we finetune the DTU pre-trained model on
BlendedMVS.

troduced in [47]. The quantitative results are summarized
in Table 2. For the learning-based methods with single-
stage refinement, our DiffMVS is 11.33% and 16.15% better
than IterMVS [28] on intermediate and advanced set respec-
tively. Remarkably, it also outperforms some learning-based
methods with multi-stage refinement, such as PVSNet [51]
and MVSTER [52]. For the learning-based methods with
multi-stage refinement, our CasDiffMVS achieves state-of-
the-art performance on both sets. In Fig. 6, we visualize
the reconstruction errors on ‘Horse” and ‘“Temples’ scenes.
CasDiffMVS demonstrates significant improvements over
existing methods and produces more complete surfaces.
Overall, our methods demonstrate very competitive gener-
alization performance.

Evaluation on ETH3D. We further evaluate the generaliza-
tion ability of our methods on the challenging ETH3D. We
set the image size and number of views to 1920 x 1280 and
10 respectively. The results are summarized in Table 3. Since
ETH3D is a large-scale dataset with large baselines, it poses
great challenges to the generalization ability of learning-
based methods. Traditional PatchMatch MVS methods [29],
[40] leverage the fast depth search and random depth per-
turbations to achieve promising results on this dataset. By
introducing the diffusion denoising process, our methods
can better consider depth sampling on this dataset. There-
fore, our CasDiffMVS achieves the best performance among
the learning-based methods on both training and test sets.
Moreover, compared with HPM-MVS [29], the state-of-the-
art traditional method, CasDiffMVS achieves competitive
performance on the test set. In addition, compared with
IterMVS [28], our DiffMVS outperforms it on both training

set and test set. Note that, DiffMVS also performs better than
many state-of-the-art multi-stage methods, e.g., GeoMVS-
Net [7], EI-MVSNet [8], Effi-MVS+ [90], on both sets. Fig. 7
shows the reconstruction error comparisons for ‘Relief” and
‘Terrace’ scenes. CasDiffMVS achieves more accurate and
complete reconstructions than other methods. These results
further demonstrate the generalization capabilities of our
methods in challenging scenarios.

Efficiency comparison. Efficiency in memory and run-time
is important in industrial applications, especially for mobile
devices with limited computational resources. Therefore,
we compare the run-time and GPU memory consumption
of our methods with the state-of-the-art MVS methods on
a workstation with one NVIDIA 2080 Ti GPU and visu-
alize the results in Fig. 8. Our DiffMVS achieves high-
est efficiency in both run-time and GPU memory. Com-
pared with IterMVS [28], the current most efficient method,
DiffMVS consumes 9.13% less GPU memory and is 69.49%
faster. Moreover, on DTU [43], Tanks & Temples [9] and
ETH3D [10], DiffMVS mostly outperforms state-of-the-art
efficient methods [22], [28], [52], [54] and achieves competi-
tive performance as TransMVSNet [6] and UniMVSNet [5],
while being much more efficient. CasDiffMVS has more
computational overheads than DiffMVS because of the two-
stage diffusion-based refinement. However, CasDiffMVS
still achieves similar efficiency as PatchmatchNet [22] in
both GPU memory and run-time, while being more efficient
than the top-performing methods [5]-[8]. Moreover, Cas-
DiffMVS achieves very competitive performance on three
benchmarks when compared with these top-performing
methods [5]-[8].
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Fig. 6. Qualitative comparisons of reconstruction errors on Tanks and Temples [9]. We visualize precision and recall error maps for ‘Horse’ and
‘Temple’ scenes.
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Fig. 7. Qualitative comparisons of reconstruction errors on ETH3D [10]. We visualize accuracy and completeness error maps for indoor ‘Relief’ and
outdoor ‘Terrace’ scenes. Green points are accurate, red points are inaccurate and blue points are unobserved with respect to the ground truth.
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TABLE 3

Quantitative results of different methods on ETH3D |

] using F'-score (at evaluation threshold 2cm, higher is better). Methods are separated into

three categories (from top to bottom): traditional methods, learning-based methods with single-stage refinement and with multi-stage refinement.

Methods Training Test
Acc.t Comp.tT Fy-scoret | Acc.t Comp.?T  Fi-score T
COLMAP [2] 91.85 55.13 67.66 91.97 62.98 73.01
ACMM [4] 90.67 70.42 78.86 90.65 74.34 80.78
HPM-MVS [29] 90.66 79.50 84.58 92.13 83.25 87.11
IterMVS [28] 79.79 66.08 71.69 84.73 76.49 80.06
DiffMVS 76.74 74.32 74.86 80.40 84.28 82.10
PatchmatchNet [22] | 64.81 65.43 64.21 69.71 77.46 73.12
EPP-MVSNet [50] 82.76 67.58 74.00 85.47 81.49 83.40
PVSNet [51] 83.00 71.76 76.57 81.55 83.97 82.62
UniMVSNet [5] 85.39 57.83 67.18 89.12 72.74 79.10
TransMVSNet [6] 69.62 71.47 70.10 73.26 81.84 76.98
MVSTER [52] 68.08 76.92 72.06 77.09 82.47 79.01
GeoMVSNet* [7] 68.71 71.22 69.69 69.77 83.68 75.70
ET-MVSNet [8] 74.71 71.38 72.46 75.28 84.01 78.63
EI-MVSNet [89] - - - 85.12 83.77 84.19
Effi-MVS+ [90] 82.33 70.42 75.28 83.90 83.81 83.62
CasDiffMVS 79.93 75.20 76.76 85.21 85.37 85.11
3 Run-time Comparison per Module
1.81 PatchmatchNet 12 1209 m— CasMVSNet
: :;I’I\:XISS TransMVSNet
1- B CasDiffMVS
1.6 MVSTER 1o
CasMVSNet
1.41 % TransMVSNet 508
@ UniMvSNet £
=121 GeoMVSNet 00
P ET-MVSNet «
£ DIffMVS 0.4
= 1.01 o 0274
& CasDiffMVS 0.231 0.237 g
03: 0.2 0136 0173 0,158
08 4 ‘ 0.078 0.072 0.043 0.051 0101
00 o & 2 N
A0 | [
0.6 e ?—*“ad o9 & o9 2% e%® 3
e
0.4
. Fig. 9. Run-time comparison per module on DTU [43] (image size:
02{ @ 1600 x 1152, number of input views N = 5). For fair comparison, all
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Fig. 8. Efficiency comparison with state-of-the-art MVS methods [5]-{8],
[19], [22], [28], [52], [54] on DTU [43] (image size: 1600 x 1152, number
of input views N = 5). For fair comparison, all experiments are done on
one workstation with a NVIDIA 2080 Ti GPU.

To better illustrate how our proposed method CasD-
iffMVS achieves its runtime advantages over 3D CNN or
transformer-based frameworks, we show run-time compar-
ison per module for CasMVSNet, TransMVSNet and Cas-
DiffMVS in Fig. 9. We observe that TransMVSNet is the
slowest because of the expensive attention operation intro-
duced in feature extraction. For depth inference in different
stages, CasDiffMVS runs much faster than CasMVSNet and
TransMVSNet, where both CasMVSNet and TransMVSNet
use 3D CNN. Compared to these methods with 3D CNN
and attention modules that are computationally expensive,

we carefully design the network architecture to reduce com-
putation, e.g. no 3D CNN or attention. In addition, since our
framework predicts an initial depth map Dinit and then uses
a diffusion model to refine it, our framework requires fewer
sampling timesteps (See more analysis in the next section).
As a result, our CasDiffMVS is more efficient than 3D CNN
or transformer-based frameworks.

4.4 Ablation study

In this section, we conduct an ablation study to validate
the effectiveness of different components in our pipeline. If
not specified, the experiments are conducted with DiffMVS.
For evaluation on DTU [43] testing set, we use the mod-
els trained on DTU training set only. For evaluation on
ETH3D [10] training set, we use the models finetuned on
BlendedMVS [44].
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TABLE 4
Ablation study of DiffMVS on DTU [43] and ETH3D [10]. Settings used in our method are underlined.
. DTU testing set ETH3D training set
Experiments Methods
Acc.l Comp.] Overall| | Acc.t Comp.?T  Fi-score
(I) w./o. diffusion 0.324 0.312 0.318 72.68 70.21 70.69
11 ise in traini . .32 .329 73. 72.4 72.47
Diffusion Models (II) noise in training 0.339 0.320 0.3 3.55 8
(IIT) noise in training & testing 0.328 0.304 0.316 73.06 72.08 72.01
(IV) w. diffusion 0.318 0.297 0.308 76.74 74.32 74.86
(V) w./o0. cost volume 3.094 2.269 2.682 48.95 47.29 47.16
VI) w./o. depth text 0.333 0.298 0.316 4494 43.54 43.07
Diffusion Conditions (VD) w./o. depth contex
(VII) w./o. image context 0.320 0.302 0.311 72.46 72.89 72.08
(VII) w. all conditions 0.318 0.297 0.308 76.74 74.32 74.86
(IX) single sample 0.355 0.324 0.340 65.96 69.15 66.77
. . . (X) w./0. confidence 0.337 0.301 0.319 72.82 71.00 71.19
Diffusion Sampling
(XI) confidence for regularization 0.335 0.301 0.318 75.44 72.20 73.22
(XII) w. confidence-based sampling | 0.318 0.297 0.308 76.74 74.32 74.86
(XIII) single U-Net 2.760 1.874 2.317 50.99 50.99 50.20
Diffusion Efficiency (XIV) stacked U-Nets 0.321 0.300 0.310 71.99 73.00 71.93
(XV) GRU 0.318 0.297 0.308 76.74 74.32 74.86
Diffusion models. In this ablation, we remove the diffusion
process from DiffMVS as the ablation model, named as
DiffMVS0. Specifically, we remove the timesteps and Gaus-
sian noise throughout training and testing. However, we
keep the condition encoder, 2D U-Net, convolutional GRU
and confidence-based sampling for fair comparison. That is,
DiffMVS0 is in fact a vanilla coarse-to-fine or iterative re-
finement approach. As shown in Row I of Table 4, Diff MV S0 & =1 ‘
. (a) Reference image (b) Depth map
performs worse on both DTU and ETH3D, with perfor- — Mg 10
mance drops of 3.2% and 5.6%, respectively. This effectively \
demonstrates that the performance gains of DiffMVS stem s u "
from our designed diffusion mechanism. Since the diffusion | \Q, be 4 4 Y | o

process introduces random noise into the model, we exper-
iment with introducing noise augmentation in DiffMVS0.
During training, we add random Gaussian noise on depth
map and keep noise scale the same as DiffMVS for fair com-
parison. During testing, we try two settings: adding noise
during testing (Row III) or not (Row II). We find that the
zero-shot generalization ability on ETH3D improves when
introducing random noise during training. However, the
performance on both DTU and ETH3D are still worse than
DiffMVS. Therefore, we conclude that the diffusion process
is effective and improves the robustness of reconstruction.

Diffusion conditions. In this ablation, we investigate the
efficacy of different diffusion conditions in our proposed
condition encoder, including cost volume, depth context and
image context features. As shown in Row V of Table 4,
the reconstruction quality degrades a lot on both DTU
and ETH3D without the cost volume as condition. This
demonstrates that the cost volume plays a crucial role in our
diffusion encoder as it encodes geometric matching infor-
mation. By removing the depth context, the results in Row
VI of Table 4 indicate that the depth context is beneficial
to improve the generalization capability of our method on
ETH3D. This is because the depth context features provide

(c) Depth error map (d) Confidence map

Fig. 10. Visualization of reference image, depth map, depth error map
and confidence map on the validation set of BlendedMVS [44].

relative depth position information, allowing our condition
encoder to consider corresponding depth ranges for new
scenes. Furthermore, by removing the image context, we
observe performance degradation from Row VII of Table 4.
In fact, the image context features provide semantic infor-
mation of objects, reflecting depth continuities of objects to
some extent. Therefore, the image context features can also
facilitate our condition encoder.

Diffusion sampling. Recall that we propose confidence-
based sampling strategy to adaptively adjust sampling
range, where we generate multiple samples for the diffu-
sion model. The confidence is learned in an unsupervised
manner (Eq. 15) and used to linearly adjust the sampling
range (Eq. 13). In this ablation experiment, we first remove
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TABLE 5
Evaluation of DiffMVS with different DDIM sampling steps T’s on DTU.

Ts | Depth Error (mm) | Acc.] Comp.| Overall |
1 4.68 0.318 0.297 0.308
2 4.63 0.321 0.297 0.309

learned confidence and use a single sample, instead of
generating multiple samples in a local range. As shown
in Row IX of Table 4, the performance on both datasets
is the worst. Second, we remove learned confidence and
generate multiple samples in a fixed sampling range. As
shown in Row X of Table 4, the performance improves when
compared with using single sample (Row IX). However, it
is worse than our model (Row XII). Third, we use learned
confidence for regularization only (Eq. 15), i.e., we do not
use confidence to adjust the sampling range. We observe
that the zero-shot generalization ability on ETH3D (Row
XI) is better than the ablation model without confidence
(Row X). However, the performance on both datasets is still
worse than our model since we further use confidence to
adaptively adjust sampling range.

In Fig. 10, we visualize the learned confidence on the
validation set of BlendedMVS [44]. Though we do not ex-
plicitly supervise the confidence during training, it reliably
reflects the depth error distribution, i.e., high confidence in
regions with low depth error and low confidence in those
with high depth error.

Diffusion efficiency. In Sec. 3.5, we design a lightweight
and effective diffusion network to denoise the depth resid-
ual, which takes advantage of U-Net and convolutional
GRU. To further study its effectiveness, we replace this
design by using a single U-Net and stacked U-Nets as the
diffusion network, respectively. Note that for stacked U-
Nets, we use K = 4 U-Nets for fair comparison and each
U-Net includes sampling, condition encoding and update.
As shown in Row XIII and XIV of Table 4, the performance
of single U-Net degrades significantly on both DTU and
ETH3D, while the performance of stacked U-Nets drops
slightly on DTU but obviously on ETH3D. Comparing Row
XIII and XIV in Table 4, we conjecture that it is important to
use multiple updates in one diffusion sampling to improve
convergence since only limited information is used in each
update. The comparison between Row XIV and XV in Table
4 verifies that the hidden state feature of the convolutional
GRU can help the denoising process. Moreover, by introduc-
ing the convolutional GRU, the U-Net in our diffusion net-
work can be reused to perform iterative refinement, instead
of stacking multiple U-Nets. This effectively reduces model
size with 33.7% less parameters compared with stacked
U-Nets, making our method more suitable for application
scenarios with limited resources.

DDIM sampling. By default, we set DDIM sampling
timestep as s = 1. We change T, and summarize the results
in Table 5. When we increase T, we find that depth accuracy
slightly improves, while the quality of the point cloud is
almost the same. Since we focus on both accuracy and
efficiency, we set T = 1 to reduce run-time. Unlike previous
depth estimation works [60] using diffusion models that
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TABLE 6
Evaluation of CasDiffMVS with different noise scales on DTU and
ETH3D. Note that on ETH3D, the noise scales become one-fourth of
the original values because of our noise-scaling strategy.

DTU testing set
Acc.] Comp.| Overall |

ETH3D training set
Acc.t  Comp.tT  Fj-score 1

(02,03)

(0.25,0.05) | 0.361 0.323 0.342 70.01 74.94 71.73

(0.50,0.10) | 0.310 0.286 0.298 79.93 75.20 76.76

(1.00,0.20) | 0.315 0.296 0.306 76.95 76.20 76.09
TABLE 7

Evaluation of DiffMVS with different random seeds on DTU.

Acc.(mm) |
0.3190 + 0.0002

Comp.(mm) |
0.2976 + 0.0006

Overall(mm) |
0.3083 + 0.0002

initialize with pure random noise, our framework predicts
an initial depth map Djni¢ and then uses a diffusion model
to refine it. Although not accurate enough, the initial depth
map provides a relatively good initial value for the diffusion
model to search for more accurate depth values in the
neighborhood of Dy Therefore, our framework requires
fewer sampling timesteps and thus reduces the run-time.

Noise scale. To investigate the influence of noise scales in
our diffusion model, we set different values for (03, 03) to
train our CasDiffMVS and evaluate it on DTU test set and
ETH3D training set. The results are reported in Table 6. We
observe that our default setting (0.50, 0.10) achieves the best
reconstruction performance on both sets. For the smaller one
(0.25,0.05), the random noise is too small to help our Cas-
DiffMVS to avoid local minima and thus the performance
degrades significantly. For the larger one (1.00,0.20), the
random noise is beneficial to our CasDiffMVS to escape local
minima but the performance slightly drops. This is because
our CasDiffMVS aims to refine a reasonable initial depth
which does not contain too much noise. Too much noise
will contaminate the initial depth and prevent our diffusion
condition from generating favorable guidance. Therefore,
our default setting can better reflect the noise level of the
initial depth and introduce favorable perturbations to avoid
local minima.

Random seeds. We evaluate DiffMVS on DTU with 10
different random seeds and summarize the results (mean
and standard variance) in Table 7. We observe that the
quantitative results are stable with different random seeds.
In previous monocular depth estimation methods [60] with
diffusion models, the depth map is fully initialized using
random noise, and thus specific modules are proposed to
combat the diversity of diffusion models. In contrast, we
use diffusion models to refine a reasonable initial depth
map, Dinit, and search for more accurate depth values in the
neighborhood of Djy. Therefore, our framework is more
stable w.r.t. random seeds.

5 CONCLUSION

In this paper, we introduce diffusion models in MVS for
efficient and accurate reconstruction. We formulate depth
refinement as a conditional diffusion process and propose
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a condition encoder for guidance. Moreover, we propose a
confidence-based sampling strategy to adaptively adjust the
per-pixel sampling range and thus improve accuracy. In-
stead of using large denoising U-Nets as classical diffusion
models, we design a lightweight diffusion network, which
combines a lightweight 2D U-Net and convolutional GRU,
to improve both performance and efficiency. Based on our
framework, we propose two novel MVS methods, DiffMVS
and CasDiffMVS. Extensive experiments demonstrate that
DiffMVS achieves competitive performance with state-of-
the-art efficiency in both run-time and memory, while CasD-
iffMVS achieves SOTA performance on DTU, Tanks & Tem-
ples and ETH3D. Because of the high efficiency, impressive
performance and lightweight structure, our methods can
serve as new strong baselines for future research in MVS.

REFERENCES

(1]

(2]
(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

Y. Furukawa, C. Hernandez et al., “Multi-view stereo: A tutorial,”
Foundations and Trends® in Computer Graphics and Vision, vol. 9, no.
1-2, pp. 1-148, 2015. 1

J. L. Schonberger and J.-M. Frahm, “Structure-from-Motion Revis-
ited,” in CVPR, 2016. 1, 5,9, 11

Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “MVSNet: Depth
inference for unstructured multi-view stereo,” in ECCV, 2018. 1,
3,7,8

Q. Xu and W. Tao, “Multi-scale geometric consistency guided
multi-view stereo,” in CVPR, 2019. 1,2,3,7,9, 11

R. Peng, R. Wang, Z. Wang, Y. Lai, and R. Wang, “Rethinking
depth estimation for multi-view stereo: A unified representation,”
in CVPR, 2022, pp. 8645-8654. 1, 3, 8,9, 11

Y. Ding, W. Yuan, Q. Zhu, H. Zhang, X. Liu, Y. Wang, and X. Liu,
“Transmvsnet: Global context-aware multi-view stereo network
with transformers,” in CVPR, 2022, pp. 8585-8594. 1, 3, 4,7, 8,
9,11

Z. Zhang, R. Peng, Y. Hu, and R. Wang, “Geomvsnet: Learning
multi-view stereo with geometry perception,” in CVPR, 2023, pp.
21508-21518. 1, 8,9, 11

T. Liu, X. Ye, W. Zhao, Z. Pan, M. Shi, and Z. Cao, “When epipolar
constraint meets non-local operators in multi-view stereo,” in
ICCV, 2023, pp. 18088-18097. 1, 8, 9, 11

A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and
temples: Benchmarking large-scale scene reconstruction,” TOG,
2017.1,3,7,8,9,10

T. Schops, J. L. Schonberger, S. Galliani, T. Sattler, K. Schindler,
M. Pollefeys, and A. Geiger, “A multi-view stereo benchmark with
high-resolution images and multi-camera videos,” in CVPR, 2017.
1,3,7,8,9,10,11, 12

R. Collins, “A space-sweep approach to true multi-image match-
ing,” in CVPR, 1996. 1, 2

P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, ]J.-M. Frahm,
R. Yang, D. Nistér, and M. Pollefeys, “Real-time visibility-based
fusion of depth maps,” in ICCV, 2007, pp. 1-8. 1

N. D. Campbell, G. Vogiatzis, C. Herndndez, and R. Cipolla,
“Using multiple hypotheses to improve depth-maps for multi-
view stereo,” in ECCV, 2008, pp. 766-779. 1

S. Galliani, K. Lasinger, and K. Schindler, “Massively parallel
multiview stereopsis by surface normal diffusion,” in ICCV, 2015.
1,3,8

Q. Xu and W. Tao, “Learning inverse depth regression for multi-
view stereo with correlation cost volume,” in AAAI, 2020. 1, 5

Y. Yao, Z. Luo, S. Li, T. Shen, T. Fang, and L. Quan, “Recurrent
MVSNet for high-resolution multi-view stereo depth inference,”
in CVPR, 2019. 2, 3,5, 8,9

Z. Wei, Q. Zhu, C. Min, Y. Chen, and G. Wang, “Aa-rmvsnet:
Adaptive aggregation recurrent multi-view stereo network,” arXiv
preprint arXiv:2108.03824, 2021. 2, 3, 8

Q. Xu, M. R. Oswald, W. Tao, M. Pollefeys, and Z. Cui, “Non-local
recurrent regularization networks for multi-view stereo,” arXiv
preprint arXiv:2110.06436, 2021. 2

X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, and P. Tan, “Cascade cost vol-
ume for high-resolution multi-view stereo and stereo matching,”
in CVPR, 2020. 2,3,4,7,8,9, 11

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]
(33]
[34]

(35]

[36]

[37]

(38]

[39]

[40]

(41]

[42]

[43]

(44]

[45]

[46]

14

S. Cheng, Z. Xu, S. Zhu, Z. Li, L. E. Li, R. Ramamoorthi, and
H. Su, “Deep stereo using adaptive thin volume representation
with uncertainty awareness,” in CVPR, 2020. 2, 3,7

J. Yang, W. Mao, J. M. Alvarez, and M. Liu, “Cost volume pyramid
based depth inference for multi-view stereo,” in CVPR, 2020. 2, 3
F. Wang, S. Galliani, C. Vogel, P. Speciale, and M. Pollefeys, “Patch-
matchnet: Learned multi-view patchmatch stereo,” in CVPR, June
2021, pp. 14194-14203. 2, 3,4,5,6,7,8,9, 11

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Advances in Neural Information Processing Systems, vol. 33,
pp. 6840-6851, 2020. 2, 3,4, 5,6,7, 8

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,”
in CVPR, 2022, pp. 10684-10695. 2, 3, 4, 6

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and
B. Poole, “Score-based generative modeling through stochastic
differential equations,” arXiv preprint arXiv:2011.13456, 2020. 2,
3,4

R. Shao, Z. Zheng, H. Zhang, ]. Sun, and Y. Liu, “Diffustereo: High
quality human reconstruction via diffusion-based stereo using
sparse cameras,” in ECCV, 2022, pp. 702-720. 2

Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
optical flow,” in ECCV. Springer, 2020, pp. 402—419. 2,3, 6,7

F. Wang, S. Galliani, C. Vogel, and M. Pollefeys, “Itermvs: iterative
probability estimation for efficient multi-view stereo,” in CVPR,
2022, pp. 8606-8615. 2, 3, 5,6,7,8,9, 11

C. Ren, Q. Xu, S. Zhang, and ]. Yang, “Hierarchical prior mining
for non-local multi-view stereo,” in ICCV, 2023, pp. 3611-3620. 2,
3,7,9,11

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017. 2

S. Chen, P. Sun, Y. Song, and P. Luo, “Diffusiondet: Diffusion
model for object detection,” arXiv preprint arXiv:2211.09788, 2022.
2,4,6

A. O. Ulusoy, M. J. Black, and A. Geiger, “Semantic multi-view
stereo: Jointly estimating objects and voxels,” in CVPR, 2017. 3

K. N. Kutulakos and S. M. Seitz, “A theory of shape by space
carving,” I[CV, vol. 38, no. 3, pp. 199-218, 2000. 3

S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction by
voxel coloring,” IJCV, vol. 35, no. 2, pp. 151-173, 1999. 3

I. Kostrikov, E. Horbert, and B. Leibe, “Probabilistic labeling cost
for high-accuracy multi-view reconstruction,” in CVPR, 2014, pp.
1534-1541. 3

M. Lhuillier and L. Quan, “A quasi-dense approach to surface
reconstruction from uncalibrated images,” PAMI, vol. 27, no. 3,
pp- 418433, 2005. 3

Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview
stereopsis,” PAMI, 2010. 3

J. L. Schonberger, E. Zheng, ].-M. Frahm, and M. Pollefeys, “Pixel-
wise view selection for unstructured multi-view stereo,” in ECCV,
2016, pp. 501-518. 3, 8

Q. Xu and W. Tao, “Planar prior assisted patchmatch multi-view
stereo,” in AAAI, 2020, pp. 12516-12523. 3

Q. Xu, W. Kong, W. Tao, and M. Pollefeys, “Multi-scale geometric
consistency guided and planar prior assisted multi-view stereo,”
PAMI, 2022. 3,9

C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman,
“Patchmatch: A randomized correspondence algorithm for struc-
tural image editing,” ACM Trans. Graph., vol. 28, no. 3, p. 24, 2009.
3

Y. Wang, Z. Zeng, T. Guan, W. Yang, Z. Chen, W. Liu, L. Xu,
and Y. Luo, “Adaptive patch deformation for textureless-resilient
multi-view stereo,” in CVPR, 2023, pp. 1621-1630. 3

H. Aanees, R. R. Jensen, G. Vogiatzis, E. Tola, and A. B. Dahl,
“Large-scale data for multiple-view stereopsis,” IJCV, 2016. 3, 7,
8,9,11,12

Y. Yao, Z. Luo, S. Li, J. Zhang, Y. Ren, L. Zhou, T. Fang, and
L. Quan, “Blendedmvs: A large-scale dataset for generalized
multi-view stereo networks,” in CVPR, 2020, pp. 1790-1799. 3,
7,8,11,12,13

R. T. Collins, “A space-sweep approach to true multi-image match-
ing,” in CVPR, 1996, pp. 358-363. 3

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted inter-
vention. Springer, 2015, pp. 234-241. 3



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[47]

(48]
[49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

J. Yan, Z. Wei, H. Yi, M. Ding, R. Zhang, Y. Chen, G. Wang, and
Y.-W. Tai, “Dense hybrid recurrent multi-view stereo net with
dynamic consistency checking,” in ECCV.  Springer, 2020, pp.
674-689. 3,8, 9

Q. Xu and W. Tao, “PVSNet: Pixelwise visibility-aware multi-view
stereo network,” ArXiv, 2020. 3, 5

J. Zhang, Y. Yao, S. Li, Z. Luo, and T. Fang, “Visibility-aware multi-
view stereo network,” in BMVC, 2020. 3

X. Ma, Y. Gong, Q. Wang, J. Huang, L. Chen, and F. Yu, “Epp-
mvsnet: Epipolar-assembling based depth prediction for multi-
view stereo,” in ICCV, 2021, pp. 5732-5740. 3, 8,9, 11

Q. Xu, W. Su, Y. Qi, W. Tao, and M. Pollefeys, “Learning inverse
depth regression for pixelwise visibility-aware multi-view stereo
networks,” IJCV, vol. 130, no. 8, pp. 2040-2059, 2022. 3, 5, 8, 9, 11
X. Wang, Z. Zhu, G. Huang, F. Qin, Y. Ye, Y. He, X. Chi, and
X. Wang, “Muvster: epipolar transformer for efficient multi-view
stereo,” in ECCV, 2022, pp. 573-591. 3, 4, 8,9, 11

K. Cho, B. V. Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations
using RNN encoder-decoder for statistical machine translation,”
arXiv preprint arXiv:1406.1078, 2014. 3

S. Wang, B. Li, and Y. Dai, “Efficient multi-view stereo by iterative
dynamic cost volume,” in CVPR, 2022, pp. 8655-8664. 3, 4, 6, 7, 8,
9,11

Y. Song and S. Ermon, “Generative modeling by estimating gra-
dients of the data distribution,” Advances in neural information
processing systems, vol. 32, 2019. 3, 4

P. Dhariwal and A. Nichol, “Diffusion models beat gans on im-
age synthesis,” Advances in Neural Information Processing Systems,
vol. 34, pp. 8780-8794, 2021. 3

J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J.
Fleet, “Video diffusion models,” NeurIPS, vol. 35, pp. 8633-8646,
2022. 3

Y. Duan, X. Guo, and Z. Zhu, “Diffusiondepth: Diffusion de-
noising approach for monocular depth estimation,” arXiv preprint
arXiv:2303.05021, 2023. 3

Y. Ji, Z. Chen, E. Xie, L. Hong, X. Liu, Z. Liu, T. Lu, Z. Li, and
P. Luo, “Ddp: Diffusion model for dense visual prediction,” arXiv
preprint arXiv:2303.17559, 2023. 3, 4

B. Ke, A. Obukhov, S. Huang, N. Metzger, R. C. Daudt, and
K. Schindler, “Repurposing diffusion-based image generators for
monocular depth estimation,” in CVPR, 2024, pp. 9492-9502. 3, 13
X. Fu, W. Yin, M. Hu, K. Wang, Y. Ma, P. Tan, S. Shen, D. Lin,
and X. Long, “Geowizard: Unleashing the diffusion priors for 3d
geometry estimation from a single image,” in ECCV. Springer,
2024, pp. 241-258. 3

C. Ye, L. Qiu, X. Gu, Q. Zuo, Y. Wu, Z. Dong, L. Bo, Y. Xiu, and
X. Han, “Stablenormal: Reducing diffusion variance for stable and
sharp normal,” ACM Transactions on Graphics (TOG), vol. 43, no. 6,
pp. 1-18,2024. 3

H. Guo, H. Zhu, S. Peng, H. Lin, Y. Yan, T. Xie, W. Wang, X. Zhou,
and H. Bao, “Multi-view reconstruction via sfm-guided monocular
depth estimation,” in CVPR, 2025. 3

J. Nam, G. Lee, S. Kim, H. Kim, H. Cho, S. Kim, and S. Kim,
“Diffusion model for dense matching,” in The Twelfth International
Conference on Learning Representations, 2023. 3, 4

J. Wang, C. Rupprecht, and D. Novotny, “Posediffusion: Solving
pose estimation via diffusion-aided bundle adjustment,” in ICCV,
2023, pp. 9773-9783. 3

J. Y. Zhang, A. Lin, M. Kumar, T-H. Yang, D. Ramanan, and
S. Tulsiani, “Cameras as rays: Pose estimation via ray diffusion,”
ICLR, 2024. 3

Y. Lu, J. Zhang, T. Fang, J.-D. Nahmias, Y. Tsin, L. Quan, X. Cao,
Y. Yao, and S. Li, “Matrix3d: Large photogrammetry model all-in-
one,” CVPR, 2025. 3

S. Saxena, C. Herrmann, J. Hur, A. Kar, M. Norouzi, D. Sun, and
D. J. Fleet, “The surprising effectiveness of diffusion models for
optical flow and monocular depth estimation,” NeurIPS, vol. 36,
pp. 39443-39469, 2023. 3

Q. Dong, B. Zhao, and Y. Fu, “Open-ddvm: A reproduction and
extension of diffusion model for optical flow estimation,” arXiv
preprint arXiv:2312.01746, 2023. 3

M.-G. Park and K.-J. Yoon, “Learning and selecting confidence
measures for robust stereo matching,” IEEE transactions on pattern
analysis and machine intelligence, vol. 41, no. 6, pp. 1397-1411, 2018.
3

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

(82]

(83]

[84]

(85]

(86]

(871

(88]

[89]

[90]

[91]

[92]

15

M. Poggi and S. Mattoccia, “Learning from scratch a confidence
measure.” in BMVC, 2016. 3

R. Haeusler, R. Nair, and D. Kondermann, “Ensemble learning for
confidence measures in stereo vision,” in CVPR, 2013, pp. 305-312.
3

F. Tosi, M. Poggi, A. Benincasa, and S. Mattoccia, “Beyond local
reasoning for stereo confidence estimation with deep learning,” in
ECCV, 2018, pp. 319-334. 3

A. Shaked and L. Wolf, “Improved stereo matching with constant
highway networks and reflective confidence learning,” in CVPR,
2017, pp. 4641-4650. 3

S. Kim, S. Kim, D. Min, and K. Sohn, “Laf-net: Locally adaptive
fusion networks for stereo confidence estimation,” in CVPR, 2019,
pp- 205-214. 3

W. Su, Q. Xu, and W. Tao, “Uncertainty guided multi-view stereo
network for depth estimation,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 32, no. 11, pp. 7796-7808, 2022. 3
S. Saxena, A. Kar, M. Norouzi, and D. J. Fleet, “Monocu-
lar depth estimation using diffusion models,” arXiv preprint
arXiv:2302.14816, 2023. 4

L. Karazija, I. Laina, A. Vedaldi, and C. Rupprecht, “Diffu-
sion models for zero-shot open-vocabulary segmentation,” arXiv
preprint arXiv:2306.09316, 2023. 4

J. Liu, G. Wang, W. Ye, C. Jiang, J. Han, Z. Liu, G. Zhang,
D. Du, and H. Wang, “Difflow3d: Toward robust uncertainty-
aware scene flow estimation with diffusion model,” arXiv preprint
arXiv:2311.17456, 2023. 4, 6

J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit
models,” arXiv preprint arXiv:2010.02502, 2020. 4, 8

S. Wang, V. Leroy, Y. Cabon, B. Chidlovskii, and ]. Revaud,
“Dust3r: Geometric 3d vision made easy,” in CVPR, 2024, pp.
20697-20709. 4

J. Ho and T. Salimans, “Classifier-free diffusion guidance,” arXiv
preprint arXiv:2207.12598, 2022. 5

T.-Y. Lin, P. Dollér, R. B. Girshick, K. He, B. Hariharan, and S. J.
Belongie, “Feature pyramid networks for object detection,” CVPR,
2017. 5

L. Lipson, Z. Teed, and ]. Deng, “Raft-stereo: Multilevel re-
current field transforms for stereo matching,” arXiv preprint
arXiv:2109.07547,2021. 6

Z. Ma, Z. Teed, and ]. Deng, “Multiview stereo with cascaded
epipolar raft,” arXiv preprint arXiv:2205.04502, 2022. 6

M.Ji,]. Gall, H. Zheng, Y. Liu, and L. Fang, “Surfacenet: An end-to-
end 3D neural network for multiview stereopsis,” in ICCV, 2017.
7

A. Paszke, S. Gross, F. Massa, A. Lerer, ]. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, . Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” ArXiv, 2019. 8

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion.” in ICLR, 2015. 8

J. Chang, J. He, T. Zhang, J. Yu, and F. Wu, “Ei-mvsnet: Epipolar-
guided multi-view stereo network with interval-aware label,” TIP,
vol. 33, pp. 753-766, 2024. 8, 9, 11

S. Wang, B. Li, and Y. Dai, “Efficient multi-view stereo by dynamic
cost volume and cross-scale propagation,” CSVT, 2024. 8, 9, 11
V.K. Vats, S. Joshi, D. J. Crandall, M. A. Reza, and S.-h. Jung, “Gc-
mvsnet: Multi-view, multi-scale, geometrically-consistent multi-
view stereo,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2024, pp. 3242-3252. 8, 9

W. Su and W. Tao, “Context-aware multi-view stereo network for
efficient edge-preserving depth estimation,” IJCV, pp. 1-25, 2025.
8,9



	Introduction
	Related Work
	Methodology
	Preliminaries
	Problem Formulation and Motivation
	Multi-scale feature extraction
	Depth initialization
	Diffusion-based refinement
	Learned upsampling
	Training loss

	Experiments
	Datasets
	Implementations
	Evaluation
	Ablation study

	Conclusion
	References

