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Abstract

Neural 3D scene representations have shown great potential for 3D reconstruc-
tion from 2D images. However, reconstructing real-world captures of complex
scenes still remains a challenge. Existing generic 3D reconstruction methods often
struggle to represent fine geometric details and do not adequately model reflective
surfaces of large-scale scenes. Techniques that explicitly focus on reflective sur-
faces can model complex and detailed reflections by exploiting better reflection
parameterizations. However, we observe that these methods are often not robust in
real scenarios where non-reflective as well as reflective components are present. In
this work, we propose UniSDF, a general purpose 3D reconstruction method that
can reconstruct large complex scenes with reflections. We investigate both camera
view as well as reflected view-based color parameterization techniques and find
that explicitly blending these representations in 3D space enables reconstruction
of surfaces that are more geometrically accurate, especially for reflective surfaces.
We further combine this representation with a multi-resolution grid backbone that
is trained in a coarse-to-fine manner, enabling faster reconstructions than prior
methods. Extensive experiments on object-level datasets DTU, Shiny Blender as
well as unbounded datasets Mip-NeRF 360 and Ref-NeRF real demonstrate that
our method is able to robustly reconstruct complex large-scale scenes with fine
details and reflective surfaces, leading to the best overall performance. Project
page: https://fangjinhuawang.github.io/UniSDF.

1 Introduction

Given multiple images of a scene, accurately reconstructing a 3D scene is an open problem in
3D computer vision. 3D meshes from reconstruction methods can be used in many downstream
applications, e.g., scene understanding, robotics, and creating 3D experiences for augmented/virtual
reality [36, 51]. Typical aspects of real-world scenes such as uniformly colored areas or non-
Lambertian surfaces remain challenging.

As a traditional line of research, multi-view stereo methods [39, 49, 16, 46] usually estimate depth
maps with photometric consistency and then reconstruct the surface as a post-processing step, e.g.,
point cloud fusion with screened Poisson surface reconstruction [19] or TSDF fusion [10]. However,
they cannot reconstruct reflective surfaces since their appearances are not multi-view consistent.
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Figure 1: Comparison of surface normals (top) and RGB renderings (bottom) on “garden spheres” [44].
While the state-of-the-art methods Ref-NeRF [44], ENVIDR [22], and Neuralangelo [21] struggle to
reconstruct reflective elements or fine geometric details, our method accurately models both, leading
to high-quality mesh reconstructions of all parts of the scene. Best viewed when zoomed in.

Recently, Neural Radiance Fields (NeRF) [28] render compelling photo-realistic images by pa-
rameterizing a scene as a continuous function of radiance and volume density using a multi-layer
perceptron (MLP). More recent works [30, 8, 42, 4] replace or augment MLPs with grid based data
structures to accelerate training. For example, Instant-NGP (iNGP) [30] uses a pyramid of grids
and hashes to encode features and a tiny MLP to process them. Motivated by NeRF, neural implicit
reconstruction methods [50, 47] combine signed distance functions (SDF) with volume rendering,
and produce smooth and complete surfaces. For acceleration, recent works [21, 37] rely on hash grid
representations and reconstruct surfaces with finer details. However, these NeRF-based methods
cannot accurately reconstruct reflective surfaces [44, 14].

To better represent the reflective appearance, Ref-NeRF [44] parameterizes the appearance using
reflected view direction that exploits the surface normals, while NeRF uses the camera view direction.
Recently, some works [51, 22, 25, 14] adopt this reflected view parameterization and successfully
reconstruct reflective surfaces. We observe that while reflected view radiance fields can effectively
reconstruct highly specular reflections, they struggle to represent more diffuse or ambiguous reflection
types and fine details that can be found in real scenes. In contrast, we find that direct camera view
radiance fields are more robust to difficult surfaces in real settings, although the reconstructions still
present artifacts for reflective scenes. In this paper, we seamlessly bring together reflected view
and camera view radiance fields into a novel unified radiance field for representing 3D real scenes
accurately in the presence of reflections. Our method is robust for reconstructing both real challenging
scenes and highly reflective surfaces.

The proposed method, named UniSDF, performs superior to or on par with respective state-of-the-art
methods which are tailored for a specific scene type. UniSDF can be applied to any type of dataset,
ranging from DTU [1], Shiny Blender [44], Mip-NeRF 360 dataset [3], to Ref-NeRF real dataset [44],
leading to the overall best performance. It demonstrates the capability to accurately reconstruct
complex scenes with large scale, fine details and reflective surfaces as we see in Fig. 1.

In summary, we propose a novel algorithm that learns to seamlessly combine two radiance fields with
a learnable weight field while exploiting the advantages of each representation. Our method produces
high quality surfaces in both reflective and non-reflective regions.

2 Related Works

Multi-view stereo (MVS). Many traditional [39, 48] and learning-based [49, 16, 46, 45] MVS
methods first estimate multi-view depth maps and then reconstruct the surface by fusing depth maps
in a post-processing step. As the core step, depth estimation is mainly based on the photometric
consistency assumption across multiple views. However, this assumption fails for glossy surfaces
with reflections, and thus MVS methods cannot reconstruct them accurately.
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Neural radiance fields (NeRF). As a seminal method in view synthesis, NeRF [28] represents
a scene as a continuous volumetric field with an MLP, with position and camera view direction
as inputs, and renders an image using volumetric ray-tracing. Since NeRF is slow to train, some
methods [30, 42, 8] use voxel-grid-like data structures to accelerate training. Many follow-up works
apply NeRFs to different tasks, e.g., sparse-view synthesis [54, 31, 43], real-time rendering [9, 34,
18, 53], 3D generation [33, 23, 7] and pose estimation [24, 41, 59]. For the 3D reconstruction task,
there are many methods [32, 50, 47, 55, 13, 21, 37, 26, 35] integrating NeRF with signed distance
functions, a common implicit function for geometry. Specifically, they transform SDFs back to
volume density for volume rendering. However, we observe that they are unable to reconstruct shiny
/ reflective surfaces since NeRF’s camera view direction parameterization for the color prediction
does not accurately model reflective parts of the scene.

NeRFs for reflections. To render reflective appearance, [40, 5, 57, 58] extend NeRF and decompose
a scene into physical components with strong simplifying assumptions, e.g., known lighting [40] or
no self-occlusion [5, 57]. Recently, Ref-NeRF [44] reparameterizes the appearance prediction with
separate diffuse and reflective components by using the reflected view direction, which improves the
rendering of specular surfaces. As a result, recent works [51, 22, 25, 14, 27] adopt this representation
to reconstruct glossy surfaces. While leading to strong view-synthesis for reflections, we find
that reflected view radiance field approaches often lead to overly smooth reconstructions with
missing details and that their optimization is not stable on real-world scenes. In contrast to existing
methods with a single radiance field, we propose to seamlessly combine reflected view and camera
view radiance fields into a novel unified radiance field with learnable weight, which is robust for
reconstruction in challenging scenes with reflective surfaces. The recent preprint Factored-NeuS [12]
also uses camera view and reflected view radiance fields. It separately supervises the rendered colors
of two radiance fields with ground-truth color, instead of learning a weight field to combine them like
ours. We find that our approach to combine two radiance fields with learnable weight is simpler to
train and leads to better reconstruction. Other recent methods [17, 56, 52] use weight to compose
the colors from camera view radiance field(s) to render reflections, similarly to us. [17, 56] can
only handle planar reflections, e.g., mirrors, and require ground-truth masks of reflective objects
to supervise the weight. In contrast, our method can handle non-planar reflective objects, e.g.,
spheres. As we learn the weight to compose camera view and reflected view radiance fields without
supervision, our method does not require additional input and can be trained from only RGB images.
MS-NeRF [52] uses multiple volume density fields and how to reconstruct the underlying surface is
undefined. In contrast, we use a single SDF field to represent geometry and can hence directly extract
the iso-surface from it.

3 Method

In this section, we first review the basic elements of NeRF [28]. We then describe the architecture
and training strategy of our method.

3.1 NeRF Preliminaries

In NeRF [28], a 3D scene is represented by mapping a position x and ray direction d to a volumetric
density σ and color c using MLP. For a pixel in the target viewpoint and its corresponding ray
r = o + td, distance values ti are sampled along the ray. The density σi is predicted by a spatial
MLP that receives the position x as input, while the directional MLP that predicts the color ci uses
the bottleneck vector b(x) from the density MLP and the view direction d as input. The final color
C is rendered as:

C =
∑
i

wici, wi = Tiαi, (1)

where αi = 1− exp(−σiδi) is opacity, δi = ti − ti−1 is the distance between adjacent samples, and
Ti =

∏i−1
j=1(1− αj) is the accumulated transmittance. The model is trained by minimizing the loss

between the predicted and ground truth color:

Lcolor = E[(||C−Cgt||2]. (2)

Note that Mildenhall et al. [28] use a single-layer directional MLP and thus often describe the
combination of NeRF’s spatial and view dependence MLPs as a single MLP.
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Figure 2: Pipeline of UniSDF. We combine the camera view radiance field and reflected view radiance
field in 3D. Given a position x, we extract iNGP features γ and input them to an MLP f that estimates
a signed distance value d used to compute the NeRF density. We parametrize the camera view and
reflected view radiance fields with two different MLPs fcam and fref respectively. Finally, we learn
a continuous weight field that is used to compute the final color as a weighted composite W of the
radiance fields colors Ccam and Cref after volume rendering, Eq. 8.

3.2 UniSDF

Given a set of known images of a scene that potentially contains reflective surfaces, our goal is to
optimize a neural implicit field and reconstruct the scene with high fidelity and geometric accuracy.
We propose UniSDF, a method that enables us to seamlessly combine camera view radiance fields
and reflected view radiance fields to reconstruct both (a) non-reflective surfaces, diffuse reflective
surfaces and complex surfaces with both reflective and non-reflective areas as well as (b) highly
specular surfaces with a well defined and detailed reflected environment. Our pipeline is shown in
Fig. 2. We generate two radiance fields that are parameterized by camera view directions or reflected
view directions and combine them at the pixel level using a learned rendered weight.

Volume rendering the SDF. We represent the scene geometry using a signed distance field (SDF),
which defines the surface S as the zero level set of SDF d:

S = {x : d(x) = 0}. (3)
To better reconstruct large-scale scenes, we follow Mip-NeRF 360 [3] and transform x into a
contracted space with the following contraction:

contract(x) =

{
x ||x|| ≤ 1(
2− 1

||x||

)(
x

||x||

)
||x|| > 1

(4)

For volume rendering, we compute the volume density σ(x) from the signed distance d(x) as:
σ(x) = αΨβ (d(x)), where Ψβ is the cumulative distribution function of a zero-mean Laplace
distribution with learnable scale parameter β > 0. The surface normal at x can be computed as the
gradient of the signed distance field: n = ∇d(x)/||∇d(x)||.

Hash Encoding with iNGP. To accelerate training and improve reconstruction of high-frequency
details, we use iNGP [30] to map each position x to a higher-dimensional feature space. Specifically,
the features {γl(x)} from the pyramid levels of iNGP are extracted with trilinear interpolation and
then concatenated to form one single feature vector γ(x), which is passed to the SDF MLP.

Camera View & Reflected View Radiance Fields. In contrast to most existing methods [28, 2, 44]
that use a single radiance field, we propose to combine a camera view radiance field and a reflected
view radiance field to better represent reflective and non reflective surfaces.

We follow NeRF [28] for representing our camera view radiance field ccam, which is computed from
features defined at each position and the camera view direction:

ccam = fcam(x,d,n,b), (5)
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Figure 3: Visualization of the color of reflected view radiance field, color of camera view radiance
field, learned weight W, composed color and surface normal on “sedan” and “garden spheres”
scenes [44]. Our method assigns high weight (red color) for reflective surfaces, e.g., window and
hood of sedan, spheres, without any supervision.

where b is the bottleneck feature vector from SDF MLP, n is the normal at x and d is the camera
view direction. Similarly to recent works [50, 47], we notice that using surface normals as input leads
to better quality.

We represent the reflected radiance field cref with an MLP fref as:

cref = fref (x, ωr,n,b), (6)

where ωr is the reflected view direction around the normal n. In Ref-NeRF [44], it is shown that
for BRDFs under a limited set of conditions, view-dependent radiance is a function of ωr only.
Unlike Ref-NeRF, which uses separate diffuse and specular components, we only use the specular
component, leading to a simpler architecture. Additionally, we observe that using separate diffuse
and specular components can lead to optimization instabilities resulting in geometry artifacts (see
supp. mat. for details).

The main difference between two radiance fields is the view directional input of the MLP. As shown
in Fig. 3, our method mainly uses the reflected view radiance field to represent highly specular
reflections such as the tree reflections in the garden spheres or the environment reflection on the sedan
car. The camera view radiance field is used to represent more diffuse reflections.

Learned composition. We compose two radiance fields using a learnable weight field in 3D.
Specifically, we use an MLP fw to learn the weight values w:

w = sigmoid (fw(x,n,b)) . (7)

We compose the signals at the pixel level. We first volume render W, Cref , Ccam following Eq. 1.
We then compose the colors for each pixel as follows:

C = W ·Cref + (1−W) ·Ccam. (8)

In Fig. 3, the weight W detects reflections well and assigns high weight to reflected view radiance
field in reflective regions. The surface normals show that our model accurately reconstructs both
reflective and non-reflective surface geometry.

Motivation of composing radiance fields. Disambiguating the influence of geometry, color and
reflection is an ill-posed problem in 3D reconstruction from images. NeRF-based methods [47, 50,
21] with camera view radiance field show their robustness in real-world scenes [1], while having
difficulty with reflections [44, 14]. Ref-NeRF based methods [25, 14, 51] with reflected view
radiance field usually perform well under restricted conditions, e.g., highly specular objects [44],
while we experimentally find their performance degrades in real-world scenes, e.g., NeRO [25]
and Ref-NeuS [14] on DTU [1] (Tab. 1), BakedSDF [51] on Mip-NeRF 360 dataset [3] (Fig. 4).
Therefore, to extend theoretically justified Ref-NeRF representation with robust scene representations,
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we propose to exploit the advantages of two radiance fields by combining them with learnable weight.
Moreover, since each type of radiance field is specialized for different levels of reflection strength
and complexity, we observe that the reconstructed geometries while using the two types of radiance
are often complementary (Fig. 5). In our method, we explicitly intertwine the radiance fields in 3D to
continuously determine and use the most adapted parametrization for each surface area.

3.3 Training and Regularization

Coarse-to-fine training. We observe that directly optimizing all the features in our multi-resolution
hash grid leads to overfitting of training images, in particular to specular appearance details, which in
turn results in incorrect geometry as we show in Fig. 7 (a). We observe that this model tends to fake
specular effects by embedding emitters inside the surface exploiting the numerous learnable features
in the hash grid. Therefore, we propose to instead optimize the hash grid features in a coarse-to-fine
fashion, similarly to [21, 37], to avoid overfitting and promote smoother and more realistic surfaces.
Specifically, we start with Linit coarse pyramid levels in the beginning of training, and introduce a
new level with higher resolution every T0 training fraction (see implementation details in Sec. 4.1).

Regularization. Following prior works [50, 47], we use an eikonal loss [15] to encourage d(x) to
approximate a valid SDF:

Leik = Ex[(||∇d(x)|| − 1)2]. (9)

To promote normal smoothness, we constrain the computed surface normal n to be close to a predicted
normal vector n′. n′ is predicted by the SDF MLP and normalized. We use the normal smoothness
loss Lp [44] as:

Lp =
∑
i

wi||n− n′||2. (10)

We also use the orientation loss Lo from Ref-NeRF [44] to penalize normals that are “back-facing”,
using:

Lo =
∑
i

wi max(0,n · d)2. (11)

Full loss function. The full loss function L includes the color loss Lcolor of composed color C and
the regularizations, which is written as follows:

L = Lcolor + λ1Leik + λ2Lp + λ3Lo. (12)

4 Experiments

4.1 Experimental Settings

Datasets. We extensively evaluate our method on four different types of datasets. The DTU
dataset [1] is an indoor object-centric dataset with ground truth point clouds. Following prior
works [50, 47], we use the same 15 scenes for evaluation. The Shiny Blender dataset [44] contains
six different shiny objects that are rendered in Blender under conditions similar to the NeRF dataset.
The Mip-NeRF 360 dataset is proposed in [3] and contains complex unbounded indoor and outdoor
scenes captured from many viewing angles. We further evaluate on the three large-scale scenes with
reflections that are introduced in Ref-NeRF [44], which consists of the scenes “sedan”, “garden
spheres” and “toycar”. For simplicity, we name these 3 scenes the “Ref-NeRF real dataset”.

Implementation details. Based on the Mip-NeRF 360 codebase [29], we implement our method in
Jax [6] with the re-implementation of VolSDF [50] and iNGP [30]. In our iNGP hierarchy of grids
and hashes, we use 15 levels from 32 to 4096, where each level has 4 channels. For coarse to fine
training, we set Linit = 4 and T0 = 2%. Similar to mip-NeRF 360 [3], we use two rounds of proposal
sampling and then a final NeRF sampling round. Following Zip-NeRF, we penalize the sum of the
mean of squared grid/hash values at each pyramid level with a loss multiplier as 0.1. Our models are
all trained on 8 NVIDIA Tesla V100-SXM2-16GB GPUs with a batch size of 214. We train 25k steps
on DTU / Shiny Blender and 100k steps on Mip-NeRF 360 / Ref-NeRF real datasets, which takes
0.75h and 3.50h respectively. See the supplement for more details.
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Table 1: Quantitative results of Chamfer Distance (C.D.) on DTU [1]. Red, orange and yellow
indicate the first, second and third best methods. †: Factored-NeuS [12] does not provide result for
scan 69. Its result is the average error of the other 14 scenes.

Methods NeuS [47] NeuralWarp [11] Geo-NeuS [13] Neuralangelo [21]
C.D. (mm) ↓ 0.87 0.68 0.51 1.07
Methods NERO [25] Ref-NeuS [14] Factored-NeuS† [12] Ours
C.D. (mm) ↓ 1.04 1.93 0.77 0.64

Table 2: Quantitative results on Shiny Blender [44], Mip-NeRF 360 dataset [3] and Ref-NeRF real
dataset [44]. ‘Mean’ represents the average rendering metrics on all datasets. Red, orange, and
yellow indicate the first, second, and third best methods for each metric. *: We follow Ref-NeuS [14]
and evaluate accuracy of mesh on four scenes (car, helmet, toaster, coffee). See supp. mat. for details.

Methods Shiny Blender Mip-NeRF 360 dataset Ref-NeRF real dataset Mean

PSNR ↑ SSIM ↑ LPIPS ↓ MAE◦ ↓ Acc* ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Mip-NeRF 360 [3] 25.49 0.939 0.122 - - 27.69 0.791 0.237 24.27 0.650 0.276 25.82 0.793 0.212
Zip-NeRF [4] 29.24 0.942 0.112 - - 28.53 0.828 0.190 23.68 0.635 0.247 27.15 0.802 0.183
Geo-NeuS [13] 28.78 0.945 0.085 10.52 1.63 - - - - - - - - -
Neuralangelo [21] 30.68 0.949 0.095 14.16 1.81 25.08 0.699 0.332 23.70 0.608 0.330 26.49 0.752 0.252
Ref-NeRF [44] 35.96 0.967 0.058 18.38 - - - - 24.06 0.589 0.355 - - -
ENVIDR [22] 35.85 0.983 0.036 4.61 - - - - - - - - - -
NeRO [25] 29.84 0.962 0.072 - - - - - - - - - - -
Ref-NeuS [14] 27.40 0.951 0.073 5.34 0.85 - - - - - - - - -
Factored-NeuS [12] 30.89 0.954 0.076 5.31 1.90 - - - - - - - - -
BakedSDF [51] 25.60 0.943 0.090 - - 26.42 0.738 0.314 24.43 0.636 0.325 25.48 0.772 0.243
Ours 36.82 0.976 0.043 4.76 1.06 27.67 0.808 0.213 23.70 0.636 0.265 29.40 0.807 0.174

Baselines. We compare our method to state-of-the-art volumetric implicit methods in surface
reconstruction [47, 11, 13, 21, 51, 25, 14, 22, 12] and view synthesis [3, 44, 4]. Neuralangelo [21]
and Zip-NeRF [4] are hash grid-based state-of-the-art methods for reconstruction and view synthesis,
respectively. Tailored for handling reflections, [25, 14, 22, 12] are top performing methods for
reconstructing and rendering objects with reflective surfaces. BakedSDF [51] is a top performing
method for reconstructing high quality mesh of unbounded scenes with reflective surfaces.

To further evaluate the effectiveness of our method, we propose two custom baselines, named “CamV”
and “RefV”. Using the same backbone as our method, “CamV” uses only the camera view radiance
field, while “RefV” uses only the reflected view radiance field following Ref-NeRF [44]. Note that
for both baselines, we also use our coarse-to-fine training strategy to improve performance.

4.2 Evaluation Results

DTU. We evaluate the reconstruction quality on DTU dataset [1]. Following prior works, we
extract the mesh at 512 resolution. For Neuralangelo [21], we report the reproduced results from the
official implementation. As shown in Tab. 1, Geo-NeuS [13] performs best on DTU and our method
outperforms the remaining methods. Geo-NeuS heavily relies on supervision from accurate SfM
point cloud and photometric consistency constraint to achieve top performance, while our method
uses rendering loss only like Neuralangelo [21]. For reflective regions, the SfM reconstruction is
inaccurate for supervision [14] and the multi-view photometric consistency is not guaranteed. We
show that Geo-NeuS performs worse on Shiny Blender [44] in Tab. 2. Besides, we observe that
NERO [25] and Ref-NeuS [14] perform worse than their baseline NeuS [47]. Though these methods
perform well on objects with strong reflections, e.g., Shiny Blender [44], they are not robust in general
real-world scenes without strong reflections.

Shiny Blender. We summarize the rendering metrics, mean angular error (MAE) of normals and
accuracy (Acc) of mesh in Tab. 2. Our method performs best in PSNR and on par with ENVIDR [22]
in SSIM, LPIPS and MAE. Note that ENVIDR additionally uses an environment MLP, which we
do not require, to improve rendering and reconstruction. Besides, we find ENVIDR unrobust in
real-world scenes with geometry artifacts on both reflective and non-reflective surfaces, shown in
Fig. 1. For mesh quality, our method performs on par with Ref-NeuS [14] in Acc, while performing
much better than it on DTU [1] (Tab. 1). This demonstrates the roubustness of our method in various
types of scenes. Moreover, our method explicitly outperforms Geo-NeuS [13], Neuralangelo [21]
and Zip-NeRF [4] in all metrics.
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Figure 4: Qualitative comparison with BakedSDF [51] on “bicycle” and “officebonsai” scenes of
Mip-NeRF 360 dataset [3]. BakedSDF produces hole structures in many regions (highlighted with
dotted orange boxes) and less details of fine structures (highlighted with red boxes), while our method
reconstructs more complete surfaces and better details. Best viewed when zoomed in.

Table 3: Quantitative comparison with two custom baselines. Best results are in bold. *: RefV fails
on scan 110 of DTU [1], the reported chamfer distance (C.D.) is the average of other 14 scenes.

Methods DTU Mip-NeRF 360 dataset Ref-NeRF real dataset

C.D. (mm) ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
CamV 0.85 27.26 0.800 0.225 23.30 0.622 0.283
RefV 0.89* 26.74 0.794 0.223 23.02 0.615 0.301
Ours 0.64 27.67 0.808 0.213 23.70 0.636 0.265

Mip-NeRF 360 dataset. As shown in Tab. 2, our method performs on par with Zip-NeRF [4] in
rendering. Note that Zip-NeRF focuses on view synthesis, while we focus on surface reconstruction.
Compared with BakedSDF [51] and Neuralangelo [21], our performance is much better in all metrics.
As shown in Fig. 4, our method reconstructs more complete surfaces and better details, while
BakedSDF shows hole artifacts and struggles to reconstruct fine geometric details.

Ref-NeRF real dataset. As shown in Tab. 2, evaluation on this dataset is challenging for all methods.
Our method outperforms Ref-NeRF [44] and Neuralangelo [21] in SSIM and LPIPS, Zip-NeRF [4] in
PSNR and SSIM, and BakedSDF [51] in LPIPS. For surface reconstruction, Neuralangelo [21] cannot
reconstruct reflective spheres well as shown in Fig. 1, while our method accurately reconstructs the
smooth surface of the reflective spheres and the fine details on the statue.

Summary of evaluation. The four datasets that we evaluate on include various scene types,
ranging from object-level to unbounded scenes, with and without reflections. While some methods
perform best on specific datasets, e.g., Geo-NeuS [13] on DTU and Zip-NeRF [4] on Mip-NeRF 360
dataset [3], we show their performance degrades on other types of datasets, e.g., Shiny Blender [44].
In contrast, our method shows competitive performance on all datasets and performs best overall (see
averaged metrics in Tab. 2). This demonstrates the robustness of our method to various scene types.

Custom baselines comparison. We compare our method with our two custom baselines, CamV
and RefV, on the DTU [1], Mip-NeRF 360 [3], and Ref-NeRF real [44] datasets. As shown in Tab. 3,
our method outperforms the two baselines in all metrics on all three datasets. Besides, CamV mostly
outperforms RefV, while RefV fails on one scene in DTU. This shows that the camera view radiance
field is usually more robust than the reflected view radiance field, although this method does not
reconstruct the geometry of reflective regions well.

Fig. 5 shows a qualitative comparison, where RefV reconstructs smooth surface for the reflective back
window but has artifacts on the side for “sedan”, while CamV fails to reconstruct accurate surfaces
because of the reflections. On the “toycar” scene, RefV fails to reconstruct the correct geometry,
while CamV reconstructs shiny surfaces better while showing artifacts on the hood. For RefV, we
sometimes observe optimization issues with separate diffuse and specular components, where the
specular component may be blank throughout training and the diffuse component (w./o. directional
input) wrongly represents the view-dependent appearance with incorrect geometry (see supp. mat. for
details). By coupling two difference radiance fields continuously in 3D, our method represents the
appearance and geometry better than the baselines that only use a single radiance field, leading to
higher-quality reconstructed surfaces.
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Figure 5: Qualitative comparison of surface normals with two baselines, RefV and CamV on “sedan”
and “toycar” scenes [44]. Best viewed when zoomed in.

Figure 6: Visualization of our meshes. Best viewed when zoomed in.

Figure 7: Ablation study of our method. Best viewed when zoomed in.

Mesh visualization. In Fig. 6, we visualize our meshes on Shiny Blender [44] and Mip-NeRF
360 dataset [3]. Our method can accurately reconstruct the surfaces of reflective objects as well as
large-scale scenes with fine geometric details.

4.3 Ablation Study

Coarse-to-fine training. As shown in Fig. 7 (a), the reconstructions of “sedan” [44] contain
artifacts on the specular window and hood without training in a coarse-to-fine manner. With all
feature pyramid grids activated in the beginning, the hash grid backbone can easily overfit to the
specular effects with wrong geometry.

Unification of radiance fields. In Tab. 3, we show that composing two radiance fields can consis-
tently improve performance. In this ablation, we justify the effectiveness of unification with learnable
weights. Since the main difference of two radiance fields is the view directional input, we design a
baseline with a single radiance field that takes both camera view d and reflected view ωr as inputs.
Structurally, this baseline has the same input information as our radiance fields and weight field.
As shown in Fig. 7 (b), our method performs better in reconstruction, while the baseline cannot
reconstruct reflective surfaces well on both scenes.

5 Conclusion

In this paper, we have presented UniSDF, a novel algorithm that learns to seamlessly combine radiance
fields for robust and accurate reconstruction of complex scenes with reflections. We find that camera
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view radiance fields, e.g., NeRF, are robust to complex real settings but cannot reconstruct reflective
surfaces well, while reflected view radiance fields, e.g., Ref-NeRF, can effectively reconstruct highly
specular surfaces but struggle in real-world settings and to represent other types of surfaces. By
adaptively combining camera view and reflected view radiance fields with a learnable weight field, our
method significantly outperforms the baselines with either single radiance field. Together with a hash
grid backbone to accelerate training and improve reconstruction details, our method performs superior
to or on par with state-of-the-art methods, tailored for handling reflections or not, in reconstruction
and rendering on different types of scenes, ranging from object-level to unbounded scenes, with and
without reflections.

Acknowledgement. We would like to thank Dor Verbin, Peter Hedman, Ben Mildenhall and Pratul
P. Srinivasan for feedback and comments.
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A Appendix / supplemental material

In the supplementary, we first discuss more experimental details, including dataset and implementation
details. Second, we discuss BakedSDF [51] in more detail. We show that BakedSDF is often not
stable and we discuss how we finetune this method to improve performance on several scenes.
Third, we summarize the detailed evaluation results on DTU [1], Shiny Blender [44], Mip-NeRF
360 [3] and Ref-NeRF real [44] datasets. We also qualitatively compare with the state-of-the-art-
methods [13, 51, 21, 14, 4]. Fourth, we include more ablation study. Fifth, we discuss the comparison
with two custom baselines, RefV and CamV, in more detail. Finally, we discuss the potential societal
impacts and limitations of our method.

B Experimental Settings

B.1 Dataset Details

We use the same data splits as prior works for fair comparison. On DTU [1], following [47, 13],
we use all the images for surface reconstruction. On Shiny Blender [44], Mip-NeRF 360 [3], and
Ref-NeRF real [44] datasets, we follow the official protocol and use the official training / testing split
for training and testing.

B.2 Implementation Details

Network Architecture. In addition to the iNGP [30] structure that we have introduced in the main
paper, we further discuss the details of the MLP architectures. Specifically, the SDF MLP f has 2
layers with 256 hidden units and outputs the bottleneck feature vector b with size 256. The two
radiance MLP fcam, fref have 4 layers with 256 hidden units. Besides, the weight MLP fw has a
single layer with 256 hidden units.

Recall that following Mip-NeRF 360 [3], we use two rounds of proposal sampling and then a final
NeRF sampling round. The proposal sampling is used to bound the scene geometry and recursively
generate more detailed sample intervals, while the final NeRF sampling is used to render the final
set of intervals into an image. We set the number of samples for these 3 sampling rounds as 64, 32,
32 for the object-level DTU [1] and Shiny Blender [44], and 64, 64, 32 for unbounded Mip-NeRF
360 [3] and Ref-NeRF real [44] datasets.

In Sec. 3 of the main paper, we mainly introduce model details of the final NeRF sampling round,
where the color is rendered, for simplicity. Thus, we introduce the details for proposal sampling
rounds here. Specifically, the proposal sampling rounds only have a SDF MLP, i.e.no radiance
MLP and weight MLP, since color is not rendered in these rounds. Moreover, the two proposal
sampling rounds share a SDF MLP, which is different from the SDF MLP in the NeRF sampling
round. Contrary to Zip-NeRF [4] that uses a distinct iNGP for each sampling round, we use a single
iNGP that is shared by all sampling rounds. We find that this produces similar performance as using
multiple iNGPs but explicitly simplifies the model.

Loss Function. In the loss function (Eq. 12 in the main paper, which is for the final NeRF sampling
round), we set λ1 = 10−4 and λ3 = 10−3. Moreover, we set λ2 = 10−4 for Shiny Blender [44], and
λ2 = 10−3 for DTU [1], Mip-NeRF 360 [3] and Ref-NeRF real [44] datasets. For proposal sampling
rounds, we replace Lcolor with Lprop, the proposal loss described in Mip-NeRF 360 [3].

Training Details. For training, we use the Adam [20] optimizer with β1 = 0.9, β2 = 0.999, ϵ =
10−6. We warm up the learning rate in the first 2% iterations and then decay the it logarithmically
from 5× 10−3 to 5× 10−4.

C BakedSDF

In our experiments, we find that the optimization of BakedSDF [51] is sensitive and often fails
completely on Shiny Blender [44] and Ref-NeRF real dataset [44], as shown in Fig. 8.
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Figure 8: Final image rendering and normal of original BakedSDF [51] on “garden spheres”
scene [44]. The training is not stable leading to degraded results (see text).

BakedSDF only uses eikonal loss, Leik, for regularization, where the corresponding loss weight is set
to 0.1 by default. We experimentally find that decreasing the eikonal loss weight can stabilize the
training and thus carefully tune it for each scene. For Shiny Blender [44], we set the eikonal loss
weight as 10−2 for “toaster”, “helmet” and “coffee”, and 10−1 for “ball”. Unfortunately, we could
not find the best eikonal loss weight for “car” and “teapot” scenes since the training does not produce
reasonable geometry. For completeness, we report the rendering metrics on these two scenes with
eikonal loss weight as 10−2. For Ref-NeRF real dataset [44], we set the eikonal loss weight as 10−2

for “sedan” and “toycar”, and 10−5 for “garden spheres”.

D Detailed Evaluation Results

Tab. 4, Tab. 5, Tab. 6 and Tab. 7 contain the detailed metrics for each individual scene on DTU [1],
Shiny Blender [44], Mip-NeRF 360 [3] and Ref-NeRF real [44] datasets respectively.

We qualitatively compare with state-of-the-art methods [21, 51, 4] on Shiny Blender, Mip-NeRF
360 and Ref-NeRF real datasets in Fig. 9. Our method is robust and demonstrates competitive
performance on various scene types, ranging from object-level to unbounded scenes, with and without
reflections.

Shiny Blender. In addition to the MAE error for evaluating the surface normal accuracy, we also
evaluate the mesh quality. Though Chamfer Distance includes both accuracy and completeness,
Ref-NeuS [14] points out that the ground-truth meshes of Shiny Blender [44] are double-layered,
which results in many redundant points in the ground truth. Therefore, we follow Ref-NeuS [14]
and only evaluate the accuracy (Acc) of reconstructed meshes. Besides, since ground-truth meshes
of “ball” and “teapot” are unavailable, we only evaluate on the remaining four scenes following
Ref-NeuS.

As shown in Fig. 10, since the objects in Shiny Blender are highly reflective, our method automatically
assigns high weights for the reflected view radiance field in most regions. Though our learned weight
is not supervised, it can successfully detect the reflective surfaces. Besides, our reflected view
radiance field represents the highly specular reflections of the surrounding environment, which is
similar to the observation in Fig. 3 of the main paper.

We further qualitatively compare the surface normals with Geo-NeuS [13], Neuralangelo [21] and
Ref-NeuS [14] in Fig. 11. For “teapot” scene, Geo-NeuS fails to reconstruct the smooth surface of the
teapot. Neuralangelo reconstructs incorrect surface elements under the object. Ref-NeuS reconstructs
overly smooth surfaces without fine details. For “ball” scene, Geo-NeuS produces slight artifacts
on the surface, while Neuralangelo reconstructs lots of incorrect surface elements inside the ball. In
contrast, our method reconstructs the surfaces more accurately on both scenes.

E Custom Baselines Comparison

In the main paper, we have compared our method with two custom baselines, CamV and RefV, both
quantitatively (Tab. 3) and qualitatively (Fig. 5).
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Figure 9: Qualitative comparison with state-of-the-art methods [21, 51, 4] on Shiny Blender [44],
Mip-NeRF 360 [3] and Ref-NeRF real [44] datasets. PSNR values for each image patch are inset.
Best viewed when zoomed in.

Table 4: Quantitative Chamfer distance (↓) of individual scenes on DTU dataset [1]. Red, orange
and yellow indicate the first, second and third best performing methods for each scene. †: Factored-
NeuS [12] provides valid results for 14 scenes, except for scan 69.

Methods 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122
NeuS [47] 1.37 1.21 0.73 0.40 1.20 0.70 0.72 1.01 1.16 0.82 0.66 1.69 0.39 0.49 0.51
NeuralWarp [11] 0.49 0.71 0.38 0.38 0.79 0.81 0.82 1.20 1.06 0.68 0.66 0.74 0.41 0.63 0.51
Geo-NeuS [13] 0.38 0.53 0.34 0.36 0.80 0.45 0.41 1.03 0.84 0.55 0.46 0.47 0.29 0.36 0.35
Neuralangelo [21] 0.49 1.05 0.95 0.38 1.22 1.10 2.16 1.68 1.78 0.93 0.44 1.46 0.41 1.13 0.97
NERO [25] 1.10 1.13 1.26 0.46 1.32 1.93 0.87 1.61 1.47 1.10 0.70 1.14 0.39 0.52 0.57
Ref-NeuS [14] 1.17 4.26 1.32 0.43 4.41 1.11 3.19 1.45 3.46 1.20 0.74 1.94 0.49 3.21 0.66
Factored-NeuS† [12] 0.82 1.05 0.85 0.40 0.99 0.59 - 1.44 1.15 0.81 0.58 0.89 0.36 0.44 0.46
Ours 0.54 0.84 0.66 0.51 0.76 0.64 0.71 0.70 0.86 0.57 0.69 0.65 0.45 0.56 0.50

In Fig. 12, we further visualize the qualitative results on scan 37 of DTU [1]. On the one hand, RefV
reconstructs holes on the objects with or without reflections, which is similar to the artifacts that
BakedSDF [51] shows in Fig. 4 of the main paper. On the other hand, though the surface is a little
noisy, CamV reconstructs shiny objects relatively well. Note that in Fig. 5 of the main paper, CamV
also reconstructs the shiny surfaces of “toycar” well, despite having some small artifacts. Since scan
37 of DTU and “toycar” of Ref-NeRF real dataset mainly contain reflective surfaces that are less
specular, we can infer that camera view radiance field can handle less specular reflections to some
extent.

As shown in Fig. 13, we sometimes observe that RefV has optimization issues with separate diffuse
and specular components. Specifically, the specular component may be empty throughout training,
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Figure 10: Visualization of the color of reflected view radiance field, color of camera view radiance
field, learned weight W (red color represents large weight), composed color and surface normal on
“helmet” and “car” scenes [44]. Best viewed when zoomed in.

Figure 11: Qualitative comparison of surface normal on “teapot” and “ball” scenes [44]. Best viewed
when zoomed in.

while the diffuse component represents both view-dependent and non view-dependent appearance.
Since diffuse component depends only on the 3D position x, the view-dependence is represented
with incorrect geometry, as shown in the results of “toycar” in Fig. 13. We believe that this issue may
be related to the high frequency signals that iNGP [30] can encode. In RefV, the diffuse component
is parameterized by the feature vector γ from iNGP, which is capable of representing very high
frequency signal. Therefore, the diffuse component may take advantage of the high capacity of
the iNGP representation to model the view-dependent appearance with geometry only, leading to
an incorrect reconstruction. This is especially true for small-scale scenes with relatively simple
view-dependent appearance, e.g., “toycar”.

F Ablation Study

Normal. Recall that we use normal n, the gradient of the signed distance field, for computing
reflected view direction ωr and loss function Eq. 11. In contrast, Ref-NeRF [44] uses predicted
normal n′ instead. In this ablation study, we follow Ref-NeRF [44] and use the predicted normal n′

for computing reflected view direction ωr and loss function Eq. 11. As shown in Tab. 8, our method
performs better than the baseline in rendering. We visualize the surface normal in Fig. 14. Our
method successfully reconstructs the reflective surfaces, while the baseline reconstructs artifacts on
them.
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Table 5: Quantitative results of individual scenes on Shiny Blender [44]. BakedSDF [51] fails
on “car” and “teapot” scenes without producing reasonable geometry. Thus we do not report its
MAE metric on these scenes. *: We follow Ref-NeuS [14] and evaluate accuracy of mesh on four
scenes (car, helmet, toaster, coffee). Red, orange, and yellow indicate the first, second, and third best
performing algorithms for each scene.

Methods car ball helmet teapot toaster coffee
PSNR ↑

Mip-NeRF 360 [3] 26.48 27.69 27.41 17.84 22.47 31.07
Zip-NeRF [4] 27.46 21.70 26.87 45.45 23.23 30.76
Geo-NeuS [13] 26.92 35.50 25.64 32.62 23.49 28.49
Neuralangelo [21] 27.58 27.87 28.68 44.38 23.42 32.16
Ref-NeRF [44] 30.82 47.46 29.68 47.90 25.70 34.21
ENVIDR [22] 29.88 41.03 36.98 46.14 26.63 34.45
NERO [25] 25.53 30.26 29.20 38.70 26.46 28.89
Ref-NeuS [14] 24.30 34.57 28.07 28.73 22.68 26.09
BakedSDF [51] 10.03 31.35 35.50 17.84 23.84 35.06
Ours 29.86 44.10 38.84 48.76 26.18 33.17

SSIM ↑
Mip-NeRF 360 [3] 0.922 0.937 0.939 0.967 0.900 0.966
Zip-NeRF [4] 0.932 0.906 0.946 0.996 0.910 0.966
Geo-NeuS [13] 0.922 0.982 0.946 0.985 0.884 0.951
Neuralangelo [21] 0.935 0.931 0.953 0.995 0.910 0.970
Ref-NeRF [44] 0.955 0.995 0.958 0.998 0.922 0.974
ENVIDR [22] 0.972 0.997 0.993 0.999 0.955 0.984
NERO [25] 0.949 0.974 0.971 0.995 0.929 0.956
Ref-NeuS [14] 0.919 0.989 0.971 0.981 0.903 0.941
BakedSDF [51] 0.807 0.979 0.990 0.967 0.939 0.978
Ours 0.954 0.993 0.990 0.998 0.945 0.973

LPIPS ↓
Mip-NeRF 360 [3] 0.062 0.189 0.127 0.094 0.144 0.118
Zip-NeRF [4] 0.060 0.231 0.115 0.010 0.127 0.128
Geo-NeuS [13] 0.080 0.082 0.082 0.024 0.134 0.110
Neuralangelo [21] 0.066 0.186 0.085 0.017 0.123 0.091
Ref-NeRF [44] 0.041 0.059 0.075 0.004 0.095 0.078
ENVIDR [22] 0.031 0.020 0.022 0.003 0.097 0.044
NERO [25] 0.074 0.094 0.050 0.012 0.089 0.110
Ref-NeuS [14] 0.076 0.058 0.046 0.025 0.114 0.119
BakedSDF [51] 0.197 0.094 0.019 0.079 0.079 0.072
Ours 0.047 0.039 0.021 0.004 0.072 0.078

MAE◦ ↓
Geo-NeuS [13] 12.15 1.04 4.12 19.77 16.23 9.79
Neuralangelo [21] 12.34 35.63 9.23 4.98 14.14 8.61
Ref-NeRF [44] 14.93 1.55 29.48 9.23 42.87 12.24
BakedSDF [51] - 0.44 1.74 - 12.24 3.31
ENVIDR [22] 7.10 0.74 1.66 2.47 6.45 9.23
Ref-NeuS [14] 7.68 0.50 1.94 10.25 5.95 5.73
Ours 6.88 0.45 1.72 2.80 8.71 8.00

Acc* ↓
Geo-NeuS [13] 0.72 - 0.74 - 4.14 0.90
Neuralangelo [21] 1.89 - 1.71 - 2.99 0.63
Ref-NeuS [14] 0.50 - 0.53 - 0.54 1.83
Ours 0.58 - 0.46 - 2.02 1.17

G Potential Societal Impacts

Positive impact. Our method can accurately reconstruct complex scenes with reflections, which is a
challenging task for existing methods. The accurate reconstruction can be used for many downstream
applications, e.g., robotics and creating 3D experiences for augmented/virtual reality.

Negative impact. Similar to most existing volumetric implicit methods [28, 3, 4, 21, 44], our
method needs to be individually trained for each scene. Though the training is fast (3.50h on Mip-
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Table 6: Quantitative results of individual scenes on Mip-NeRF 360 dataset [3]. Red, orange, and
yellow indicate the first, second, and third best performing algorithms for each scene.

PSNR Outdoor Indoor

bicycle flowers garden stump treehill room counter kitchen bonsai
Mip-NeRF 360 [3] 24.40 21.64 26.94 26.36 22.81 31.40 29.44 32.02 33.11
Zip-NeRF [4] 25.80 22.40 28.20 27.55 23.89 32.65 29.38 32.50 34.46
Neuralangelo [21] 23.78 21.03 23.76 21.38 22.83 28.76 25.39 30.40 28.39
BakedSDF [51] 23.05 20.55 26.44 24.39 22.55 30.68 27.99 30.91 31.26
Ours 24.67 21.83 27.46 26.39 23.51 31.25 29.26 31.73 32.86

SSIM Outdoor Indoor

bicycle flowers garden stump treehill room counter kitchen bonsai
Mip-NeRF 360 [3] 0.693 0.583 0.816 0.746 0.632 0.913 0.895 0.920 0.939
Zip-NeRF [4] 0.769 0.642 0.860 0.800 0.681 0.925 0.902 0.928 0.949
Neuralangelo [21] 0.605 0.508 0.635 0.502 0.623 0.869 0.796 0.891 0.857
BakedSDF [51] 0.588 0.504 0.793 0.662 0.543 0.892 0.845 0.903 0.911
Ours 0.737 0.606 0.844 0.759 0.670 0.914 0.888 0.919 0.939

LPIPS Outdoor Indoor

bicycle flowers garden stump treehill room counter kitchen bonsai
Mip-NeRF 360 [3] 0.289 0.345 0.164 0.254 0.338 0.211 0.203 0.126 0.177
Zip-NeRF [4] 0.208 0.273 0.118 0.193 0.242 0.196 0.185 0.116 0.173
Neuralangelo [21] 0.390 0.419 0.326 0.440 0.360 0.269 0.310 0.172 0.312
BakedSDF [51] 0.400 0.437 0.204 0.343 0.471 0.270 0.293 0.165 0.244
Ours 0.243 0.320 0.136 0.242 0.265 0.206 0.206 0.124 0.184

Table 7: Quantitative results of individual scenes on the Ref-NeRF real dataset [44]. Red, orange,
and yellow indicate the first, second, and third best methods for each metric.

Methods Sedan Toycar Garden Spheres

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Mip-NeRF 360 [3] 25.56 0.708 0.304 24.32 0.654 0.256 22.94 0.587 0.268
Zip-NeRF [4] 25.85 0.733 0.260 23.41 0.626 0.243 21.77 0.545 0.238
Neuralangelo [21] 24.82 0.656 0.384 24.28 0.638 0.293 22.03 0.529 0.313
Ref-NeRF [44] 25.20 0.639 0.406 24.40 0.627 0.292 22.57 0.502 0.366
BakedSDF [51] 25.70 0.700 0.332 24.51 0.655 0.280 23.08 0.553 0.363
Ours 24.68 0.700 0.309 24.15 0.639 0.245 22.27 0.567 0.243

  Reference Image                         CamV (CD: 0.88)                         RefV (CD: 1.12)                              Ours (CD: 0.84)

Figure 12: Comparison with two baselines, CamV and RefV, on scan 37 of DTU [1] (CD is Chamfer
distance error). CamV reconstructs more noisy surface on the red handle with reflections (highlighted
with red box and zoomed in), while RefV generates holes on the shiny objects and even the brick
without any reflections. Best viewed when zoomed in.

NeRF 360 [3] and Ref-NeRF real [44] datasets), we use 8 NVIDIA Tesla V100-SXM2-16GB GPUs
simultaneously, which consumes much energy.
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Figure 13: Visualization of diffuse color component, specular color component and surface normal
for RefV on “sedan” and “toycar” scene [44]. RefV successfully decomposes two color components
for “sedan”, while it fails on “toycar” with blank specular component. Best viewed when zoomed in.

Table 8: Ablation study of normals on the Ref-NeRF real dataset [44].

Methods PSNR ↑ SSIM ↑ LPIPS ↓
w. predicted normal 23.56 0.630 0.268
Ours 23.70 0.636 0.265

Figure 14: Ablation study of normals on “sedan” and “garden spheres” scene [44]. Best viewed when
zoomed in.

H Limitations

In this work, we mainly focus on robust surface reconstruction of scenes with reflections. Our method
cannot be used for editing tasks such as relighting. Besides, similar to most NeRF methods [3, 21, 4],
our method requires the estimated poses from SfM, e.g., COLMAP [38], as input for real-world
scenes. However, SfM needs to perform feature matching, which is based on multi-view photometric
consistency, for pose estimation. As we discuss in the main paper, multi-view photometric consistency
is not guaranteed with reflective surfaces and thus SfM may produce inaccurate poses, which may
lead to inaccurate reconstruction and rendering. In addition, our method cannot accurately reconstruct
the reflective surfaces with sparse input views. It is challenging to determine reflections in this
case because of the ambiguity. Note that both Shiny Blender [44] and Ref-NeRF real dataset [44]
carefully provide dense 360 degree views around the reflective objects so that it is easier to detect the
view-dependent reflective appearance.

I Licenses for Existing Assets

code:

• multinerf [29]: Apache License 2.0.

datasets:
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• DTU [1]: we do not find the license.
• Shiny Blender [44]: coffee (CC-0 license), toaster (CC-BY license), car (CC-0 license),

helmet (CC-0 license).
• Mip-NeRF 360 dataset [3]: CC-BY license.
• Ref-NeRF real dataset [44]: it is captured by the authors of Ref-NeRF [44], we do not find

the license.
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